Akinsete, A. A. (1999): The probability and randomization of a completely paired zero-or-one game. Proceedings of the Section on Statistics in Sports: American Statistical Association. 1999, 26-30.

Abstract:

We consider a tournament involving an even number of contestants or players, arranged in pairs of rows and columns. Each contestant in pair with another, is involved in the contest at each run or group of the game, where "a run" or group of the game is a set of pairs of all contestants. After a run, the players form a new set of pairs, such that no pair in the last run of game is repeated in the new set of run. Or, in general that no two contestants in pair in any run of the games, is allowed to interact in the remaining runs of contests. Games are rated on the basis of the random selections of a given set of natural numbers by a pair of contestants, the rating of any game being 0 or 1 , subject to a given set of conditions. We obtain the probabilities for the balanced formation of pairs of contestants, and compare by some statistical tests, the outcome of a game involving these contestants with a real life tournament in a football game involving the 1997/98 English FA Premier League, and a Bernoulli random generated computer binary numbers, having a 50% probability of success. We show that the outcomes from a series of football matches can be modeled by the realizations from the throws of a pair of fair dice.

