

Figures 128-139: Carapace, anterior half, of representative Syntropini species, emphasizing differences in the anterior emargination and median indentation. 128. K. punctipalpi punctipalpi, female, Cabo San Lucas, Baja California Sur, Mexico. 129. K. bruneus loretoensis, male, Loreto, Baja California Sur, Mexico. 130. K. hirsuticauda, female, Indian Gorge Canyon, ABDSP, California, USA. 131. K. cazieri, male, Cuatro Ciénegas, Coahuila, Mexico. 132. K russelli, female, Deming, New Mexico, USA. 133. K. kovariki, female holotype, Durango, Durango, Mexico. 134. T. atrox, female, Colima, Colima, Mexico. 135. T. cristimanus, male, Autlán, Jalisco, Mexico. 136. H. eusthenura, male, Cabo San Lucas, Baja California Sur, Mexico. 137. H. gravicaudus, female, Santa Rosalia, Baja California Sur, Mexico. 138. H. globosus, female, Zacatecas, Zacatecas, Mexico. 139. Syntropis aalbui, holotype female, Cataviña, Baja California, Mexico (after Soleglad et al., 2007: fig. 17, in part).

Smeringurinae. Haradon (1983) defined a new subgenus Smeringurus comprised of five species and subspecies, with the type species S. vachoni (Stahnke, 1961). This subgenus was differentiated from Paruroctonus by the numerous irregularly placed setae occurring between the ventral median ($V M$) carinae of metasomal segments I-IV and having a significantly more slender metasoma. Stockwell (1992) established Smeringurus as a genus.

The slender metasoma found in Smeringurus is significant, in our opinion, and represents a valid diagnostic character. This is clear from the histograms presented in Fig. 191 showing morphometrics of metasomal segments I-IV (width-to-length ratios). In these data, where all genera and all species are represented, males and females are combined. This further illustrates the very slender metasoma of

Smeringurus as compared to the other three genera in Smeringurinae. Not only do we see complete separation of the standard deviation ranges, but the absolute ranges are separate as well. Mean value differences range from 150 to 300% and resulting p-values from variance analysis are negligible exhibiting 13-14 fractional digits of significance. These data also show that genera Vejovoidus and Paravaejovis in general have the stockiest metasoma.

For genera Smeringurus, Vejovoidus, and Paravaejovis, additional specimens were measured, albeit most of the ratios were calculated from published data. In additional to material examined, the following references were used: Gertsch \& Allred (1965), Gertsch \& Soleglad (1966), Williams (1968b, 1969, 1970a, 1970b, 1972, 1980, 1987), Williams \& Hadley (1967), Soleglad (1972), Sissom \& Francke (1981), Hjelle

Figures 140-151: Chela, external view, of representative Kochius, Thorellius, Hoffmannius, and Syntropis species, showing carination and trichobothria pattern. In particular note the well developed subdigital ($D 2$) carina, the mid-palm position of trichobothrium $D t$, and location of $D b$ dorsal of the digital ($D 1$) carina. 140. Kochius punctipalpi punctipalpi, female, Cabo San Lucas, Baja California Sur, Mexico. 141. K. hirsuticauda, female, Indian Gorge Canyon, ABDSP, California, USA. 142. K. bruneus loretoensis, male, Loreto, Baja California Sur, Mexico. 143. K russelli, female, Deming, New Mexico, USA. 144. Thorellius intrepidus, male, Mexico. 145. T. atrox, female, Colima, Colima, Mexico. 146. Hoffmannius eusthenura, male, Cabo San Lucas, Baja California Sur, Mexico. 147. H. gravicaudus, female, Santa Rosalia, Baja California Sur, Mexico. 148. H. globosus, female, Zacatecas, Zacatecas, Mexico. 149. H. puritanus, male, Jasper Trail, ABDSP, California, USA. 150. H. viscainensis, female, Las Bombas, Baja California Sur, Mexico. 151. Syntropis williamsi, male paratype, Los Aripes, Baja California Sur, Mexico (after Soleglad et al., 2007: fig. 13, in part).

Figures 152-159: Diagrammatic view of chelal palm, proximal aspect, showing digital carinae (D1-D5). In particular, this perspective shows the profiled development of the subdigital (D2) carina and its relative position with respect to $D 1$ and $D 3$. See Figs. 140-145 for lateral view of D2 carina showing its relative length as compared to chelal palm length. 152. Kochius punctipalpi punctipalpi, female, Cabo San Lucas, Baja California Sur, Mexico. 153. K. bruneus loretoensis, male, Loreto, Baja California Sur, Mexico. 154. K. hirsuticauda, female, Indian Gorge Canyon, ABDSP, California, USA. 155. K. cazieri, male, Cuatro Ciénegas, Coahuila, Mexico. 156. K. russelli, female, Deming, New Mexico, USA. 157. Thorellius intrepidus, male, Mexico. 158. T. cristimanus, male, Autlán, Jalisco, Mexico. 159. T. atrox, female, Colima, Colima, Mexico. Dl = digital carina, $D 2=$ subdigital carina, $D 3=$ dorsosecondary carina, $D 4=$ dorsomarginal carina, $D 5=$ dorsointernal carina.
(1982), Haradon (1984a, 1984b, 1985), Sissom \& Henson (1998).

Tribe Syntropini. Williams (1980: 49-55), in his key to the species groups of genus Vaejovis found in Baja California, Mexico, contrasts the heavily developed chela found in Kochius (referred to as the "punctipalpi" group) to the more slender chela found in Hoffmannius (referred to as the "eusthenura" group):
"... 16 (1). Pedipalp palm greatly swollen, ratio of movable-finger length to palm width 1.8 or less ---- 17

Pedipalp palm not greatly swollen, ratio of movablefinger length to palm greater than 1.8 ---------- 30 [this isolates Williams's "eusthenura" group which now is genus Hoffmannius] ...".

In addition, Williams (1980) uses the relatively thin metasoma found in Kochius to differentiate it from another, also heavy chelate group now placed in genus Pseudouroctonus:
"... 17 (16). Pectine teeth 15 or fewer in males, 14 or fewer in females; ratio of metasoma length to width of metasomal segment V equal to or less than 7.5 ; metasomal segment II as wide as or wider than long; metasomal segment IV with ratio of length to width 1.5 or less --------- 18 [this isolates species now placed in genus Pseudouroctonus]

Pectine teeth 16 or more in males, 15 or more in females; ratio of metasoma length to width of metasomal segment V greater than 7.5; metasomal
segment II longer than wide; metasomal segment IV with ratio of length to width greater than 1.5
22 [this isolates Williams's "punctipalpi" group now placed in genus Kochius] ...".

Although we agree in general with Williams's (1980) characterizations of these two assemblages of species, it is difficult to quantify these differences across all species to be used as "discrete" characters in a cladistic analysis. In order to fully understand these characterizations and others that may be present, we studied all morphometrics of these two genera along with genus Thorellius, the sister genus of Kochius.

Maximized ratios. We extracted a full set of measurements for a subset of species in genera Hoffmannius and Kochius where all possible morphometric ratios were compared: 300 resulting ratios based on 25 morphometrics. Each component of a ratio (i.e., its numerator and denominator) was analyzed as to its effect on the comparison between the two species sets. The measurements having the most effect across all ratio comparisons are considered measurements of potential diagnostic importance. To fully realize this, measurements having the most effect from both species sets must be combined in a ratio in order to maximize the ratio's effect as diagnostic (see Fet \& Soleglad, 2002: 5, for an explanation of this technique).

For genus Kochius two morphometrics dominated the ratio comparisons, the chelal palm depth and palm width. The palm depth dominated in all ratios (24 in all) and the palm width dominated in 23 ratios. For genus Hoffmannius five morphometrics dominated in most of

	Metasoma (L/W)					$\begin{gathered} \text { PD/ } \\ \mathbf{V} \mathbf{W} \end{gathered}$	$\begin{gathered} \text { PD/ } \\ \text { IV W } \end{gathered}$	$\begin{gathered} \text { PD/ } \\ \text { TelW } \end{gathered}$	$\begin{gathered} \text { PD/ } \\ \text { TelD } \end{gathered}$	$\begin{gathered} \mathbf{P W} / \\ \mathbf{V} \mathbf{W} \end{gathered}$	$V M(\mathrm{I}-\mathrm{IV})$ Carinae	$\begin{gathered} \text { Chela } \\ \text { Carinae * } \end{gathered}$	
	I	II	III	IV	V								
K. sonorae $\begin{aligned} & \text { ¢ } \\ & \\ & \\ & \\ & 0\end{aligned}$	0.947	1.176	1.375	1.800	2.400	$1 . \overline{3} 3$	$1 . \overline{3} 3$	1.818	2.222	1.133	$\mathbf{8 , 8 , 8 , 8}$	4,4,4,4,4\|x, $\mathrm{x}, \mathrm{x} \mid \mathrm{X}$	
K. russelli $\begin{array}{ll}\text { ¢ } \\ & \text { ¢ } \\ \\ & \text { Q }\end{array}$	$\begin{aligned} & \hline 0.960 \\ & 0.960 \end{aligned}$	$\begin{aligned} & \hline 1.130 \\ & 1.122 \end{aligned}$	$\begin{aligned} & 1.217 \\ & 1.229 \end{aligned}$	$\begin{aligned} & 1.682 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 2.429 \\ & 2.298 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & \hline 0.955 \\ & 0.979 \end{aligned}$	$\begin{aligned} & \hline 1.313 \\ & 1.306 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 1.621 \end{aligned}$	$\begin{aligned} & 0.905 \\ & 0.787 \end{aligned}$	$\begin{aligned} & \hline 2,2,6,6 \\ & 2,2,6,6 \end{aligned}$	$3,3, \mathbf{4 , 4 , 4}\|\mathbf{6}, \mathrm{x}, \mathrm{x}\| 1$	
K. kovariki¢ ¢ Q	0.925	1.109	1.190	1.607	2.483	0.983	0.934	1.118	1.425	0.879	$0,0,2,4$	$2,2,2,2,2\|2,2,2\| 2$	
K. crassimanus	1.000	1.194	1.257	1.706	2.625	1.188	1.118	1.357	1.462	1.125	3,7,7,7	$3,3,3,3,3\|3,3,3\| 3$	
K. punctipalpi ${ }^{\text {a }}$	$\begin{aligned} & 1.000 \\ & 0.923 \end{aligned}$	$\begin{aligned} & 1.226 \\ & 1.108 \end{aligned}$	$\begin{aligned} & 1.333 \\ & 1.286 \end{aligned}$	$\begin{aligned} & 1.893 \\ & 1.875 \end{aligned}$	$\begin{aligned} & \hline 2.643 \\ & 2.594 \end{aligned}$	$\begin{aligned} & 1.464 \\ & 1.531 \end{aligned}$	$\begin{aligned} & 1.464 \\ & 1.531 \end{aligned}$	$\begin{aligned} & 2.050 \\ & 2.227 \end{aligned}$	$\begin{aligned} & \hline 2.412 \\ & 2.579 \end{aligned}$	$\begin{aligned} & 1.179 \\ & 1.188 \end{aligned}$	$\begin{aligned} & 2,3,6,7 \\ & 2,3,6,7 \end{aligned}$	$\mathbf{6 , 6 , 6 , 6 , 6}\|\mathbf{6}, x, x\| 3$	
K. atenango $\begin{array}{ll}\text { ¢ } \\ \\ & \text { ot } \\ \\ 0\end{array}$	$\begin{aligned} & \hline 1.000 \\ & 0.944 \end{aligned}$	$\begin{aligned} & \hline 1.206 \\ & 1.083 \end{aligned}$	$\begin{aligned} & \hline 1.375 \\ & 1.294 \end{aligned}$	$\begin{aligned} & 1.871 \\ & 1.844 \end{aligned}$	$\begin{aligned} & \hline 2.759 \\ & 2.594 \end{aligned}$	$\begin{aligned} & \hline 1.069 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 0.969 \\ & 1.034 \end{aligned}$	$\begin{aligned} & \hline 1.632 \\ & 1.364 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \end{aligned}$	$1,3,3,7$	$\mathbf{4 , ? , 4 , 4 , 4 \| ? , 4 , 4 \| \mathbf { 4 }}$	
	$\begin{aligned} & 1.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1.259 \\ & 1.242 \end{aligned}$	$\begin{aligned} & 1.462 \\ & 1.303 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 1.781 \end{aligned}$	$\begin{aligned} & 2.917 \\ & 2.677 \end{aligned}$	$\begin{aligned} & 1.250 \\ & 1.290 \end{aligned}$	$\begin{aligned} & 1.250 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 1.429 \end{aligned}$	$\begin{aligned} & 1.667 \\ & 1.819 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.226 \end{aligned}$	$\begin{aligned} & \hline \mathbf{6 , 6 , 6 , 6} \\ & \mathbf{6 , 6 , 6 , 6} \end{aligned}$	$\mathbf{5 , 5 , 5 , 5 , 5}\|\mathbf{6 , x}, \mathrm{x}\| 3$	
K. bruneus $\begin{array}{ll}\text { ¢ } \\ \\ & \text { ¢ } \\ \\ 0\end{array}$	$\begin{aligned} & \hline 0.963 \\ & 1.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.160 \\ & 1.226 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.250 \\ & 1.379 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.909 \\ & 1.926 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.714 \\ & 2.920 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.429 \\ & 1.440 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.364 \\ & 1.333 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.875 \\ & 1.800 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.308 \\ & 2.250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.333 \\ & 1.360 \\ & \hline \end{aligned}$	$\begin{array}{r} 7,7,7,7 \\ 7,7,7,7 \\ \hline \end{array}$	$\overline{\mathbf{6 , 6}, 6,6,6}\|6, x, x\| 4$	
K. insularis $\begin{array}{ll}\text { O } \\ & \text { Q }\end{array}$	$\begin{aligned} & 1.000 \\ & 0.933 \end{aligned}$	$\begin{aligned} & 1.250 \\ & 1.286 \end{aligned}$	$\begin{aligned} & 1.391 \\ & 1.357 \end{aligned}$	$\begin{aligned} & 1.818 \\ & 1.846 \end{aligned}$	$\begin{aligned} & 2.750 \\ & 2.792 \end{aligned}$	$\begin{aligned} & 1.350 \\ & 1.417 \end{aligned}$	$\begin{aligned} & 1.227 \\ & 1.308 \end{aligned}$	$\begin{aligned} & 1.688 \\ & 1.889 \end{aligned}$	$\begin{aligned} & 2.250 \\ & 2.429 \end{aligned}$	$\begin{aligned} & 1.250 \\ & 1.250 \end{aligned}$	$\begin{aligned} & \mathbf{8 , 8 , 8 , 8} \\ & \mathbf{8 , 8 , 8 , 8} \end{aligned}$	$\mathbf{4 , 4 , 4 , 4 , 4 \| x , x , x \| X}$	
K. magdalensis ${ }_{\text {¢ }}^{\text {¢ }}$	$\begin{aligned} & 1.000 \\ & 0.929 \end{aligned}$	$\begin{aligned} & 1.292 \\ & 1.231 \end{aligned}$	$\begin{aligned} & 1.391 \\ & 1.360 \end{aligned}$	$\begin{aligned} & 1.955 \\ & 1.875 \end{aligned}$	$\begin{aligned} & 2.762 \\ & 2.773 \end{aligned}$	$\begin{aligned} & 1.333 \\ & 1.364 \end{aligned}$	$\begin{aligned} & 1.273 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 2.333 \\ & 2.500 \end{aligned}$	$\begin{aligned} & 1.143 \\ & 1.182 \end{aligned}$	$\begin{aligned} & 3,3,3,7 \\ & 3,3,3,7 \end{aligned}$	$\mathbf{5 , 5 , 5 , 5 , 5}\|\mathrm{x}, \mathrm{x}, \mathrm{x}\| \mathrm{X}$	
K. hirsuticauda	$\begin{aligned} & 1.136 \\ & 1.100 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 1.444 \end{aligned}$	$\begin{aligned} & 1.722 \\ & 1.706 \end{aligned}$	$\begin{aligned} & \hline 2.235 \\ & 2.333 \end{aligned}$	$\begin{aligned} & 3.333 \\ & 3.462 \end{aligned}$	$\begin{aligned} & 1.867 \\ & 1.769 \end{aligned}$	$\begin{aligned} & 1.647 \\ & 1.533 \end{aligned}$	$\begin{aligned} & 2.800 \\ & 2.556 \end{aligned}$	$\begin{aligned} & 2.800 \\ & 2.556 \end{aligned}$	$\begin{aligned} & 1.800 \\ & 1.538 \end{aligned}$	$\begin{aligned} & \hline \mathbf{8 , 8 , 8 , 8} \\ & \mathbf{8 , 8 , 8 , 8} \end{aligned}$	6,6,6,6,6\|6,x,x	4
T. atrox $\begin{array}{ll}\text { 人 } \\ \\ & \text { O } \\ \\ 0\end{array}$	0.776	0.933	1.056	1.444	2.056	0.913	0.824	1.135	1.355	0.826	$2,2,3,6$	$\mathbf{b , b , b , b , b \| b , b , b \| b}$	
T. cristimanus ${ }^{\text {人 }}$	$\begin{aligned} & \hline 0.771 \\ & 0.717 \end{aligned}$	$\begin{aligned} & \hline 0.928 \\ & 0.846 \end{aligned}$	$\begin{aligned} & 1.023 \\ & 0.953 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.395 \\ & 1.313 \end{aligned}$	$\begin{aligned} & \hline 1.978 \\ & 1.913 \end{aligned}$	$\begin{aligned} & 1.026 \\ & 1.318 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.261 \end{aligned}$	$\begin{aligned} & 1.290 \\ & 1.526 \end{aligned}$	$\begin{aligned} & \hline 1.481 \\ & 1.871 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.872 \\ & 0.909 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,2,3,3 \\ & 1,1,3,6 \end{aligned}$	$\begin{gathered} \mathbf{b , b}, \mathbf{b}, \mathbf{4}, \mathbf{4}\|\mathbf{b}, \mathbf{b}, \mathbf{4}\| \mathbf{b} \\ - \end{gathered}$	
T. intrepidus ${ }^{\text {¢ }}$	$\begin{aligned} & 0.990 \\ & 0.840 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.173 \\ & 1.093 \end{aligned}$	$\begin{aligned} & 1.245 \\ & 1.191 \end{aligned}$	$\begin{aligned} & 1.734 \\ & 1.637 \end{aligned}$	$\begin{aligned} & 2.250 \\ & 2.397 \end{aligned}$	$\begin{aligned} & 1.383 \\ & 1.400 \end{aligned}$	$\begin{aligned} & 1.327 \\ & 1.373 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.625 \\ & 1.667 \end{aligned}$	$\begin{aligned} & 1.711 \\ & 1.750 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.064 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 2,2,2,3 \\ & 2,2,3,6 \end{aligned}$	$\mathbf{b , 4 , 4 , 4 , 4 \| b , b , 4 \| b}$	
	$\begin{aligned} & 0.986 \\ & 0.956 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.192 \\ & 1.191 \end{aligned}$	$\begin{aligned} & 1.222 \\ & 1.233 \end{aligned}$	$\begin{aligned} & 1.586 \\ & 1.524 \end{aligned}$	$\begin{aligned} & 2.197 \\ & 2.115 \end{aligned}$	$\begin{aligned} & \hline 1.091 \\ & 1.038 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.029 \\ & 0.964 \end{aligned}$	$\begin{aligned} & 1.469 \\ & 1.209 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.714 \\ & 1.421 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.848 \\ & 0.846 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,0,0,0 \\ & 0,0,0,0 \end{aligned}$	$\begin{gathered} 1,1,1,1,1\|1,1,1\| 1 \\ - \end{gathered}$	
T. occidentalis ${ }^{\text {¢ }}$	$\begin{aligned} & 0.674 \\ & 0.833 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.864 \\ & 0.957 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.911 \\ & 1.014 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.364 \\ & 1.296 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.841 \\ & 1.912 \\ & \hline \end{aligned}$	0.743	0.703	1.040	1.238	0.629	$\begin{aligned} & 1,2,2,6 \\ & 2,2,2,5 \end{aligned}$	$\begin{gathered} 2, x, 1,1,1\|21,1\| 1 \\ 2,1,2,2,2\|\mathbf{b}, 2,2\| 1 \\ \hline \end{gathered}$	
T. subcristatus $\begin{aligned} & \text { § } \\ & \\ & \\ & \text { O }\end{aligned}$	$\begin{aligned} & \hline 0.906 \\ & 0.824 \end{aligned}$	$\begin{aligned} & \hline 1.094 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1.194 \\ & 1.097 \end{aligned}$	$\begin{aligned} & 1.600 \\ & 1.500 \end{aligned}$	$\begin{aligned} & \hline 2.333 \\ & 2.200 \end{aligned}$	$\begin{aligned} & 1.067 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 1.067 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 1.280 \\ & 0.964 \end{aligned}$	$\begin{aligned} & 1.524 \\ & 1.227 \end{aligned}$	$\begin{aligned} & \hline 0.917 \\ & 0.733 \\ & \hline \end{aligned}$	$1,1,1,2$	$1,1,1,1,1\|1,1,1\| 1$	

Table 4: Select characters of genera Kochius and Thorellius. Ratios calculated from measurements taken from specimens examined, Gertsch \& Allred (1965), Williams (1968, $1970,1971 \mathrm{a}, 19 \mathrm{lb}$), Stannke (1973), Sissom (1989), Ponce Saavedra \& Sissom (2004), Francke \& González Santillan (2006). Order of species based on gross metasomal granular-crenulate, $\mathbf{6}=$ crenulate, $7=$ crenulate-serrate, $\mathbf{8}=$ serrate, $\mathbf{a}=$ weak-marbled, $\mathbf{b}=$ strong marbled. * $D 1-D 5|V 1-V 3| E$.
Soleglad \& Fet: Smeringurinae and Syntropinae

		Metasoma (L/W)					$\begin{gathered} \hline \mathbf{P D} / \\ \mathbf{V}_{-} W \end{gathered}$	$\begin{gathered} \text { PD/ } \\ \text { IV_W } \end{gathered}$	$\begin{gathered} \text { PD/ } \\ \text { TelW } \end{gathered}$	$\begin{gathered} \hline \text { PD/ } \\ \text { TelD } \end{gathered}$	$\begin{aligned} & \hline \mathbf{P W} / \\ & \mathbf{V} _\mathbf{W} \end{aligned}$	VM (I-IV) Carinae	$\begin{gathered} \text { Chela } \\ \text { Carinae * } \end{gathered}$	
		I	II	III	IV	V								
H. waueri	$\begin{aligned} & 1 \\ & 0 \\ & q \end{aligned}$	0.818	0.818	0.864	1.238	1.714	0.524	0.524	0.733	0.917	0.476	$0,0,0,0$	$1,1,1,1,1\|1,1,1\| 1$	
H. bilineatus	$\begin{aligned} & \hat{1} \\ & \text { of } \end{aligned}$	$\begin{aligned} & \hline 0.667 \\ & 0.667 \end{aligned}$	$\begin{aligned} & \hline 0.833 \\ & 0.767 \end{aligned}$	$\begin{aligned} & \hline 1.000 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 1.304 \\ & 1.069 \end{aligned}$	$\begin{aligned} & 2.000 \\ & 1.786 \end{aligned}$	$\begin{aligned} & 0.864 \\ & 0.714 \end{aligned}$	$\begin{aligned} & 0.826 \\ & 0.690 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.188 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 1.356 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.727 \\ & 0.643 \end{aligned}$	$0,0,0,0$	$\underset{-}{1,1,1,1,1\|1,1,1\| 1}$	
H. gravicaudus	$\begin{aligned} & \hat{1} \\ & 0 \\ & 0 \end{aligned}$	0.804 0.725	0.933 0.860	0.978 0.900	1.261 1.151	1.783 1.625	$\begin{aligned} & 0.674 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 0.674 \\ & 0.528 \end{aligned}$	$\begin{aligned} & 0.838 \\ & 0.609 \end{aligned}$	$\begin{aligned} & 1.107 \\ & 0.848 \end{aligned}$	$\begin{aligned} & 0.652 \\ & 0.482 \end{aligned}$	$0,0,0,0$	$0,0,0,0,0\|0,0,0\| 0$	
H. punctatus	$\begin{aligned} & \hat{1} \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.742 \\ & 0.700 \end{aligned}$	0.900 0.838	0.967 0.925	1.279 1.235	$\begin{aligned} & 1.869 \\ & 1.818 \end{aligned}$	$\begin{aligned} & \hline 0.885 \\ & 0.848 \end{aligned}$	$\begin{aligned} & 0.885 \\ & 0.824 \end{aligned}$	$\begin{aligned} & 1.350 \\ & 0.982 \end{aligned}$	$\begin{aligned} & 1.742 \\ & 1.333 \end{aligned}$	$\begin{aligned} & 0.721 \\ & 0.697 \end{aligned}$	0,0,0,0	0,0,0,0,0\|0,0,0	0
H. spinigerus	$\begin{aligned} & \text { § } \\ & 0 \\ & q \end{aligned}$	$\begin{aligned} & 0.772 \\ & 0.743 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.945 \\ & 0.882 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.000 \\ & 0.955 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.327 \\ & 1.265 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.982 \\ & 1.826 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.655 \\ & 0.725 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.655 \\ & 0.735 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.857 \\ & 0.943 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.091 \\ & 1.136 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.582 \\ & 0.667 \\ & \hline \end{aligned}$	$0,0,0,0$	$0,0,0,0,0\|0,0,0\| 0$	
H. vittatus	$\begin{aligned} & \text { र } \\ & 0 \end{aligned}$	$\begin{aligned} & 0.769 \\ & 0.667 \end{aligned}$	$\begin{aligned} & \hline 0.885 \\ & 0.828 \end{aligned}$	$\begin{aligned} & \hline 0.962 \\ & 0.929 \end{aligned}$	1.346 1.250	$\begin{aligned} & 1.923 \\ & 1.852 \end{aligned}$	$\begin{aligned} & \hline 0.731 \\ & 0.630 \end{aligned}$	$\begin{aligned} & 0.731 \\ & 0.607 \end{aligned}$	$\begin{aligned} & 0.950 \\ & 0.810 \end{aligned}$	$\begin{aligned} & 1.267 \\ & 1.133 \end{aligned}$	$\begin{aligned} & 0.654 \\ & 0.556 \end{aligned}$	$0,0,0,1$	$0,0,0,0,0\|0,0,0\| 0$	
H. eusthenura	$\begin{aligned} & \hat{1} \\ & 0 \\ & q \end{aligned}$	$\begin{aligned} & 0.882 \\ & 0.865 \end{aligned}$	$\begin{aligned} & 1.045 \\ & 1.014 \end{aligned}$	$\begin{aligned} & 1.119 \\ & 1.113 \end{aligned}$	$\begin{aligned} & 1.485 \\ & 1.443 \end{aligned}$	$\begin{aligned} & 1.984 \\ & 1.892 \end{aligned}$	$\begin{aligned} & \hline 0.635 \\ & 0.622 \end{aligned}$	$\begin{aligned} & 0.606 \\ & 0.657 \end{aligned}$	$\begin{aligned} & 0.833 \\ & 0.708 \end{aligned}$	$\begin{aligned} & \hline 0.952 \\ & 0.852 \end{aligned}$	$\begin{aligned} & 0.571 \\ & 0.581 \end{aligned}$	$0,0,1,2$	$\begin{gathered} 0,0,0,0,0\|1,0,0\| 0 \\ - \end{gathered}$	
H. diazi	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & q \end{aligned}$	$\begin{aligned} & 0.938 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 1.031 \\ & 0.931 \end{aligned}$	$\begin{aligned} & 1.063 \\ & 1.036 \end{aligned}$	$\begin{aligned} & 1.438 \\ & 1.321 \end{aligned}$	$\begin{aligned} & 1.969 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 0.688 \\ & 0.679 \end{aligned}$	$\begin{aligned} & 0.688 \\ & 0.679 \end{aligned}$	$\begin{aligned} & 0.957 \\ & 0.864 \end{aligned}$	$\begin{aligned} & 1.158 \\ & 1.056 \end{aligned}$	$\begin{aligned} & 0.625 \\ & 0.607 \end{aligned}$	$0,0,0,0$	$0,0,0,0,0\|0,0,0\| 0$	
H. hoffmanni	$\begin{aligned} & 1 \\ & 0 \\ & q \end{aligned}$	$\begin{aligned} & 0.917 \\ & 0.815 \end{aligned}$	$\begin{aligned} & 1.087 \\ & 0.962 \end{aligned}$	$\begin{aligned} & 1.174 \\ & 1.080 \end{aligned}$	$\begin{aligned} & 1.565 \\ & 1.400 \end{aligned}$	$\begin{aligned} & \hline 2.083 \\ & 2.000 \end{aligned}$	$\begin{aligned} & 0.583 \\ & 0.615 \end{aligned}$	$\begin{aligned} & 0.609 \\ & 0.640 \end{aligned}$	$\begin{aligned} & 0.778 \\ & 0.727 \end{aligned}$	$\begin{aligned} & \hline 1.000 \\ & 0.889 \end{aligned}$	$\begin{aligned} & 0.542 \\ & 0.577 \end{aligned}$	$0,0,0,0$	0,0,0,0,0\|0,0,0	0
H. coahuilae	$\begin{aligned} & 1 \\ & 0 \\ & q \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.833 \\ & 0.811 \end{aligned}$	$\begin{aligned} & \hline 0.933 \\ & 0.971 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.034 \\ & 1.029 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.379 \\ & 1.343 \end{aligned}$	$\begin{aligned} & \hline 2.214 \\ & 2.088 \end{aligned}$	$\begin{aligned} & \hline 0.923 \\ & 0.824 \end{aligned}$	$\begin{aligned} & \hline 0.897 \\ & 0.800 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.300 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1.529 \\ & 1.217 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.857 \\ & 0.794 \end{aligned}$	$\begin{gathered} 0,3,3,7 \\ - \end{gathered}$	$\begin{gathered} 1,1,1,1,1\|1,1,1\| 1 \\ - \end{gathered}$	
H. waeringi	$\begin{aligned} & 10 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.941 \\ & 0.868 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.088 \\ & 1.000 \end{aligned}$	1.152 1.108	1.529 1.368	$\begin{aligned} & \hline 2.094 \\ & 1.789 \end{aligned}$	$\begin{aligned} & \hline 0.531 \\ & 0.579 \end{aligned}$	$\begin{aligned} & \hline 0.500 \\ & 0.579 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.630 \\ & 0.647 \end{aligned}$	$\begin{aligned} & \hline 0.810 \\ & 0.786 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.438 \\ & 0.526 \end{aligned}$	$2,2,2,3$	$\begin{gathered} 2,1,3,3,3\|2,2,2\| 1 \\ - \end{gathered}$	
H. globosus	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.880 \\ & 0.833 \end{aligned}$	$\begin{aligned} & \hline 1.083 \\ & 0.958 \end{aligned}$	$\begin{aligned} & \hline 1.125 \\ & 1.043 \end{aligned}$	$\begin{aligned} & 1.565 \\ & 1.455 \end{aligned}$	$\begin{aligned} & \hline 2.500 \\ & 2.318 \end{aligned}$	$\begin{aligned} & \hline 0.818 \\ & 0.818 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.783 \\ & 0.818 \end{aligned}$	$\begin{aligned} & 0.947 \\ & 0.818 \end{aligned}$	$\begin{aligned} & 1.125 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 0.818 \\ & 0.727 \end{aligned}$	$3,3,6,7$	$\begin{gathered} 1,1,1,1,1\|1,1,1\| 1 \\ - \end{gathered}$	
H. confusus	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.080 \\ & 0.882 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.200 \\ & 0.970 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.200 \\ & 1.061 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.538 \\ & 1.371 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.115 \\ & 1.800 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.577 \\ & 0.629 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.577 \\ & 0.629 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.652 \\ & 0.688 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.789 \\ & 0.957 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.538 \\ & 0.571 \\ & \hline \end{aligned}$	1,2,3,6	$\begin{gathered} 1,1,1,1,1\|1,1,1\| 1 \\ - \end{gathered}$	
H. galbus	$\begin{aligned} & 1 \\ & 0 \\ & o \\ & \underline{q} \end{aligned}$	$\begin{aligned} & \hline 0.958 \\ & 0.885 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.125 \\ & 1.038 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.167 \\ & 1.120 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.565 \\ & 1.440 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.125 \\ & 2.080 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.667 \\ & 0.840 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.696 \\ & 0.840 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.842 \\ & 0.913 \end{aligned}$	$\begin{aligned} & 1.067 \\ & 1.167 \end{aligned}$	$\begin{aligned} & 0.583 \\ & 0.720 \\ & \hline \end{aligned}$	$1,1,1,1$	0,0,0,0,0\|0,0,0	0
H. glabrimanus	$\begin{aligned} & \hat{1} \\ & 0 \\ & + \end{aligned}$	0.944	1.151	1.226	1.608	2.365	0.942	0.961	1.000	1.167	0.923	$1,1,1,3$	$1,1,1,1,1\|1,1,1\| 1$	
H. puritanus	$\begin{aligned} & 10 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.029 \\ & 0.895 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.265 \\ & 1.053 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.364 \\ & 1.167 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.813 \\ & 1.571 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.406 \\ & 2.364 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.813 \\ & 0.636 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.813 \\ & 0.600 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.897 \\ & 0.636 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.083 \\ & 0.808 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.719 \\ & 0.606 \\ & \hline \end{aligned}$	$1,1,1,2$	$\begin{gathered} 1,1,1,1,1\|1,1,1\| 1 \\ - \end{gathered}$	
H. viscainensis	¢ Q +	$\begin{aligned} & 1.071 \\ & 1.034 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.308 \\ & 1.286 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.423 \\ & 1.407 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.920 \\ & 1.885 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.792 \\ & 2.833 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.583 \\ & 0.667 \end{aligned}$	$\begin{aligned} & 0.560 \\ & 0.615 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.778 \\ & 0.727 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.933 \\ & 0.889 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.500 \\ & 0.583 \\ & \hline \end{aligned}$	$2,2,3,4$	$1,1,1,1,1\|1,1,1\| 1$	

Table 5: Select characters of genus Hoffmannius. Ratios calculated from measurements taken from specimens examined, Hoffmann (1931), Gertsch (1958), Gertsch \& Allred (1965), Gertsch \& Soleglad (1972), Williams (1970c, 1970d, 1986), Yahia \& Sissom (1996), Sissom \& Hendrixson (2005). Order of species based on gross metasomal proportions, the more stocky metasoma first. Carinae codes: $\mathrm{x}=$ information not available, $0=$ obsolete, $1=$ vestigial-smooth, $2=$ smooth, $3=$ smooth-granular, $\mathbf{4}=$ granular, $5=$ granular-crenulate, $\mathbf{6}=$ crenulate, $7=$ crenulate-serrate, $\mathbf{8}=$ serrate. $* D 1-D 5|V 1-V 3| E$.

Smeringurinae

Vaejovinae
Figures 160-169: Metasomal segment IV, lateral and dorsal views, showing development of the terminus of the dorsal (D) and dorsolateral ($D L$) carinae for the three subfamilies of Vaejovidae. Subfamily Smeringurinae: 160. Paruroctonus stahnkei, male, Mesa, Arizona, USA. 161. Smeringurus aridus, male, ABDSP, California, USA. 162. Vejovoidus longiunguis, male, Las Bombas, Baja California Sur, Mexico. 163. Paravaejovis pumilis, male, Ciudad Constitución, Baja California Sur, Mexico. Subfamily Syntropinae: 164. Stahnkeus subtilimanus, ABDSP, California, USA. 165. Kochius punctipalpi punctipalpi, female, Cabo San Lucas, Baja California Sur, Mexico. 166. Hoffmannius viscainensis, male, Las Bombas, Baja California Sur, Mexico. 167. Hoffmannius gravicaudus, female, Santa Rosalia, Baja California Sur, Mexico. Subfamily Vaejovinae: 168. Vaejovis solegladi, female, Cuicatlan, Oaxaca, Mexico. 169. Pseudouroctonus reddelli, male, Comal Co., Texas, USA. AC = articulation condyle, $\mathrm{td}_{1}=$ terminal denticle of dorsal carina, $\mathrm{td}_{2}=$ terminal denticle of dorsolateral carina. After Soleglad \& Fet (2003b), in part.
the ratios in which they were involved: the width of metasomal segment V (all 24 ratios) and segment IV (21 ratios), and the telson vesicle width (23 ratios), depth (22 ratios) and telson length (19 ratios). These results, in part, are not surprising, when reflecting on diagnostic descriptions and keys of Williams (1970d, 1980) discussing the "punctipalpi" and "eusthenura" groups, in particular, the large robust chela in Kochius and the heavy metasoma in Hoffmannius. Our results did, however, uncover the relatively large telson exhibited in Hoffmannius as compared to Kochius (and Thorellius, see below), a character not previously disclosed.

Interestingly, the other three metasomal segment widths in Hoffmannius also dominated in the majority of the ratios in which they were involved but not as significantly as in segments V and IV: segment III, 18 out of 24 ratios, segment II, 17 ratios, and segment I, 16 ratios. This dominance of the metasoma segment's width definitely implies that the metasoma in Hoffmannius is significantly wider than in Kochius. Similarly, consistent with the heavy chelal palm, the chela length in Kochius also dominated in its ratios, 22 out of 24 . To further emphasize a thinner metasoma in Kochius, ratio comparisons for segment II-V lengths dominated in this

Figures 170-181: Telson, lateral view, of representative Syntropini species. 170. Kochius hirsuticauda, female, Indian Gorge Canyon, ABDSP, California, USA. 171. K. bruneus loretoensis, male, Loreto, Baja California Sur, Mexico. 172. K. punctipalpi punctipalpi, female, Cabo San Lucas, Baja California Sur, Mexico. 173. K. punctipalpi punctipalpi, male, Los Aripes, Baja California Sur, Mexico. Note the significant sexual dimorphism in this species. 174. K. cazieri, male, Cuatro Ciénegas, Coahuila, Mexico. 175. K. russelli female, Deming, New Mexico, USA. 176. Thorellius atrox, female, Colima, Colima, Mexico. 177. T. cristimanus, male, Autlán, Jalisco, Mexico. 178. Hoffmannius globosus, female, Zacatecas, Zacatecas, Mexico. 179. H. eusthenura, male, Cabo San Lucas, Baja California Sur, Mexico. 180. Syntropis williamsi, female holotype, Los Aripes, Baja California Sur, Mexico. 181. S. macrura, female, Isla Carmen, Baja California Sur, Mexico. (Figs. 180, 181 after Soleglad et al., 2007, in part).

Figures 182-190: Base of telson vesicle, dorsal view, showing development of vesicular "tabs" (pointed to by arrow) in subfamilies Syntropinae and Smeringurinae. Note the reduced tabs, the sharp granules essentially obsolete, in Smeringurus, Paravaejovis, and Vejovoidus, whereas in Paruroctonus and subfamily Syntropinae, the spine is distinct and well developed. 182. Hoffmannius waeringi, male, Indian Gorge Canyon, ABDSP, California, USA. 183. Kochius punctipalpi punctipalpi, female, Cabo San Lucas, Baja California Sur, Mexico. 184. Stahnkeus subtilimanus, female, Split Mountain, ABDSP, California, USA. 185. Paruroctonus becki, male, Cottonwood Springs, Joshua Tree National Monument, California, USA. 186. Paruroctonus silvestrii, Chihuahua Road, ABDSP, California, USA. 187. Paruroctonus luteolus, male, Palo Verde Wash, ABDSP, California, USA. 188. Smeringurus mesaensis, female, Palo Verde Wash, ABDSP, California, USA. 189. Paravaejovis pumilis, male, Ciudad Constitución, Baja California Sur, Mexico. 190. Vejovoidus longiunguis, female, Las Bombas, Baja California Sur, Mexico.
genus (whereas widths dominated in Hoffmannius) ranging from 13 to 17 ratios out of 24 .

Based on this analysis, we constructed ten morphometric ratios for all species, including both

Figure 191: Metasomal segment (I-IV) proportions for subfamily Smeringurinae (ratios $=$ segment width $/$ segment length). Data include both adult males and females combined. These data show that Smeringurus segments are significantly thinner than in the other three genera, not only showing complete separation between standard error ranges, but for all data points. Statistical difference between Smeringurus and Paruroctonus is indicated by significant standard error separation and the negligible variance analysis value (p -value). In addition, segment III is at least twice as long as wide (indicated by 0.500 triangle marker) and segment IV is in general three times as long as wide (indicated by 0.333 triangle marker). The other genera cluster together, with Vejovoidus and Paravaejovis exhibiting the most stocky metasoma. The data, which encompass all species currently defined in Smeringurinae, were gathered from measurements calculated in this study as well as published measurements, primarily from those sources where the species were originally described (i.e., most measurements are from type specimens). See Fig. 1 for explanation of histogram components.

		Kochius	Thorellius	Hoffmannius
PD/ V_W	O	$1.00-1.87$ (1.344) ($\pm 0.249)$ [9]	1.03-1.38 (1.142) ($\pm 0.163)$ [4]	$0.53-0.94$ (0.723) ($\pm 0.134)$ [16]
	+	$0.94-1.77$ (1.292) (± 0.268) [10]	$0.74-1.40$ (1.052) ($\pm 0.257)[6]$	$0.50-0.85$ (0.678) ($\pm 0.109)$ [16]
$\begin{aligned} & \text { PD/ } \\ & \text { IV_W } \end{aligned}$	o	$0.95-1.65$ (1.279) (± 0.214 [9$]$	$1.00-1.33(1.105)(\pm 0.150)[4]$	$0.50-0.96$ (0.716) ($\pm 0.134)$ [16]
	¢	$0.93-1.53$ (1.217) (± 0.223 [10$]$	$0.70-1.37$ (1.004) ($\pm 0.260)[6]$	$0.52-0.84$ (0.673) ($\pm 0.103)$ [16]
PD/ TelW	o	$0.97-2.80$ (1.779) (± 0.517) [9]	1.28-1.62 (1.416) ($\pm 0.164)$ [4]	0.63-1.35 (0.925) (± 0.205) [16]
	¢	$1.03-2.56$ (1.672) (± 0.502 [10$]$	0.96-1.67 (1.257) ($\pm 0.279)[6]$	$0.61-1.00$ (0.788) ($\pm 0.124)$ [16]
$\begin{aligned} & \text { PD/ } \\ & \text { TelD } \end{aligned}$	ot	$1.50-2.80$ (2.125) (± 0.431) [9]	$1.48-1.71$ (1.608) (± 0.122 [[4]	$0.79-1.74$ (1.136) (± 0.248) [16]
	+	$1.36-2.58$ (2.000) (± 0.510 [10$]$	$1.23-1.87$ (1.477) ($\pm 0.271)[6]$	$0.79-1.33$ (0.999) (± 0.161) [16]
$\begin{aligned} & \text { PD/ } \\ & \text { TelL } \end{aligned}$	ô	$0.42-0.93$ (0.650) (± 0.172) [9]	$0.47-0.59$ (0.520) ($\pm 0.057)$ [4]	$0.23-0.52$ (0.359) ($\pm 0.078)$ [16]
	\%	$0.39-0.70$ (0.532) (± 0.088) [10]	$0.40-0.64$ (0.499) ($\pm 0.099)$ [6]	$0.25-0.47$ (0.344) (± 0.060) [15]
$\begin{aligned} & \text { PW/ } \\ & \text { V_W } \end{aligned}$	o	$0.90-1.80$ (1.217) (± 0.253) [9]	$0.85-1.06$ (0.925) ($\pm 0.097)$ [4]	$0.44-0.92$ (0.653) (± 0.134) [16]
	¢	$0.79-1.54$ (1.154) ($\pm 0.221)$ [10]	0.63-1.00 (0.824) ($\pm 0.130)$ [6]	$0.48-0.79$ (0.613) ($\pm 0.089)$ [16]
$\begin{aligned} & \text { PW/ } \\ & \text { IV_W } \end{aligned}$	o	$0.86-1.59$ (1.156) (± 0.207) [9]	$0.80-1.02$ (0.897) ($\pm 0.095)$ [4]	$0.41-0.94$ (0.647) (± 0.134) [16]
	¢	$0.77-1.33$ (1.087) ($\pm 0.178)$ [10]	$0.59-0.98$ (0.785) ($\pm 0.131)$ [6]	$0.48-0.77$ (0.609) (± 0.085) [16]
PW/ TelW	o	$0.91-2.70$ (1.607) (± 0.491) [9]	$1.10-1.25$ (1.147) $(\pm 0.072)[4]$	$0.52-1.20$ (0.832) ($\pm 0.179)$ [16]
	+	$1.00-2.22$ (1.482) ($\pm 0.393)$ [10]	$0.79-1.19$ (0.987) ($\pm 0.141)$ [6]	$0.59-0.96$ (0.713) (± 0.105) [16]
$\begin{aligned} & \text { PW/ } \\ & \text { TelD } \end{aligned}$	o	$1.36-2.70$ (1.918) ($\pm 0.398)$ [9]	$1.26-1.33$ (1.304) ($\pm 0.032)$ [4]	$0.67-1.42$ (1.022) (± 0.212) [16]
	+	$1.27-2.22$ (1.777) ($\pm 0.397)$ [10]	$1.00-1.29(1.162)(\pm 0.116)[6]$	$0.71-1.17$ (0.904) ($\pm 0.129)$ [16]
PW/ TelL	\%	$0.39-0.90$ (0.588) ($\pm 0.165)$ [9]	$0.40-0.45$ (0.422) (± 0.024) [4]	$0.20-0.44$ (0.323) ($\pm 0.068)$ [16]
	¢	$0.37-0.57$ (0.475) (± 0.065 [10]	$0.32-0.45$ (0.393) ($\pm 0.046)$ [6]	$0.22-0.39$ (0.311) (± 0.048) [15]

 telson width; $\mathrm{TelD}=$ telson depth.

Figure 192: Histogram showing maximized morphometric ratios of species (female) in genera Hoffmannius, Kochius, and Thorellius. See Figure 193 for data on male, and Table 6 for additional data. Variance analysis p-values depicted in rectangles, Hoffmannius as compared to Thorellius and Kochius on left, and Kochius as compared to Thorellius on right. Statistically significant p-values (i.e., very small) indicated with black arrow. See Fig. 1 for explanation of histogram components.
genders, in the genera Hoffmannius, Kochius, and Thorellius utilizing the seven morphometrics isolated above:

1) palm depth / metasomal segment V width
2) palm depth / metasomal segment IV width
3) palm depth / telson width
4) palm depth / telson depth
5) palm depth / telson length

6-10) palm width / as above
Note that all ten ratios combine predominant morphometrics across both species sets, the large chelal palm in Kochius divided by the wide metasoma and large telson vesicle in Hoffmannius. Table 6 provides
statistical data for these ten ratios across the three genera for both genders. Of these ten ratios, we concentrated on five which are highlighted in Tables $4-5$, which show specific ratio values by species and gender, and Figures 192-195, which provide histograms and further statistical data.

The five histograms per gender presented in Figures 192-193 illustrate the significance of maximizing these morphometric ratios. It is apparent from these histograms that there is a significant standard error separation for all ratios between Hoffmannius and Kochius, and separation for eight out of ten ratios between Hoffmannius and Thorellius. In all cases, Thorellius is intermediate between Hoffmannius and Kochius. Of great significance is the absolute separation

Figure 193: Histogram showing maximized morphometric ratios of species (male) in genera Hoffmannius, Kochius, and Thorellius. See Figure 192 for data on female and Table 6 for additional data. Variance analysis p-values depicted in rectangles, Hoffmannius as compared to Thorellius and Kochius on left, and Kochius as compared to Thorellius on right. Statistically significant p-values (i.e., very small) indicated with black arrow. See Fig. 1 for explanation of histogram components.
of both Thorellius and Kochius from Hoffmannius for males when the chelal depth is compared to the width of metasomal segment V. Note that this involves almost all species assigned to the three genera. Stated p-values for these comparisons are also quite small, implying a "statistical significance" when the variance is analyzed. For the just mentioned ratio, when Hoffmannius is compared to Kochius, we see considerably small pvalues, $3.11 \mathrm{E}-08$ and $1.95 \mathrm{E}-08$, for males and females respectively.

Species discussion. Although we observe separation between Hoffmannius and the two genera Kochius and Thorellius, there is a lot of variability within the three genera with respect to these morphometric ratios. Tables $4-5$ provide specific ratio
values for all species, male and female. It is interesting to see which species in a genus is the closest to a "typical species" as defined by these ratios.

For genus Kochius, species K. hirsuticauda, K. punctipalpi, K. bruneus, K. insularis, and K. magdalensis in general have the highest ratio values across the genus. [Note that, since the dominant Kochius morphometrics, palm depth and width, form the numerator of the ratio, their effect will make the ratio larger]. These species are all primarily found in Baja California, Mexico. The species with the lower ratio values are K. russelli, K. kovariki, and K. atenango. These species normally exhibit a somewhat thinner chela. It is also interesting to point out that these species are found in western Mexico from Sonora and Durango,

Figure 194: Morphometric ratios contrasting metasomal segments (length/width) for species in tribe Syntropini (male). Variance analysis p-values depicted in rectangles, Hoffmannius as compared to Kochius. Statistically significant p-values (i.e., very small) indicated with black arrow. See Fig. 1 for explanation of histogram components.
to Guerrero. Species K. cazieri, from Coahuila, Mexico, and K. crassimanus from southern Texas, are intermediate in these ratios.

In genus Thorellius, the species with generally the higher ratio values are T. intrepidus and T. cristimanus. Both of these species have very robust chelae. Species T. subcristatus and T. occidentalis exhibit less robust
chelae and therefore show lower ratio values. T. cisnerosi and T. atrox are intermediate. It is interesting to point out that the ratio values for T. intrepidus and T. cristimanus are lower than those that dominate in Kochius species, such as K. hirsuticauda. This is due to the heavier metasoma (see below) and larger telson found in genus Thorellius.

Figure 195: Morphometric ratios contrasting metasomal segments (length/width) for species in tribe Syntropini (female). Variance analysis p-values depicted in rectangles, Hoffmannius as compared to Kochius. Statistically significant p-values (i.e., very small) indicated with black arrow. See Fig. 1 for explanation of histogram components.

For genus Hoffmannius, there is a great variability in these ratio values, caused in most part by several species exhibiting somewhat heavy chelae, whereas others have longer and thinner chelae; all, however, have wide robust metasomas and telsons. Since dominant morphometrics for Hoffmannius form the denominator in the ratios, species with the smallest ratio values are typical of this genus. These species include H. waeringi,
H. gravicaudus, and H. waueri. In H. puritanus, H. glabrimanus, and H. coahuilae, ratio values are somewhat large due to their relatively thin metasoma (see below).

Metasoma ratios. We also analyzed the relative heaviness of the metasomal segments where we formed ratios for each segment, length divided by its width. Tables $4-5$ show these data on a species and gender
basis, and Figures 194-195 show histograms for both genders of all four genera comprising tribe Syntropini.

The proportional differences in the metasoma for tribe Syntropini provide excellent diagnostic characters for its four genera. Figures 194-195 shows histograms of all five metasomal segments for the four genera. First and foremost, genus Syntropis has a very slender metasoma for both genders. All five segments are longer than wide, segment five, on average, is well over four times longer than wide, whereas in the other genera, the average is well under three times longer. Genus Kochius exhibits the next most slender metasoma, showing significant standard error differences in segments III-V, exhibiting very small p -values as compared to Hoffmannius, ranging from 0.00013 to $3.96 \mathrm{E}-06$. The mean value difference between segments III-V for the two genera with the most slender metasomas, Syntropis and Kochius, are very significant: 71-166 \%, 78-159 \%, and $65-161 \%$ percentage of difference (includes both male and female), thus further emphasizing a very slender metasoma of Syntropis. Genera Hoffmannius and Thorellius metasomal morphometrics are essentially the same, as seen in the histograms, standard deviation ranges essentially overlapped.

Of particular interest is a comparison between genera Kochius and Hoffmannius. Although we observe essential separation of standard deviation ranges for segments III-V, exhibiting a $24-29 \%, 28-34 \%$, and $28-37 \%$ percentage of difference between the mean values (includes both male and female), the two genera do overlap in some "end-point" species (i.e., an overlap between the most slender Hoffmannius and the most stocky Kochius). In Tables 4-5 (where the taxa are roughly ordered from the stockiest to thinnest metasomas), H. puritanus and H. viscainensis, the species with the thinnest metasoma in Hoffmannius, overlap with Kochius sonorae and K. russelli, the more stocky members of Kochius. At the other extreme, if we compare the mean value difference between the thinnest male Kochius (K. hirsuticauda) and the stockiest Hoffmannius (H. gravicaudus), we see a 87% percent difference for segment V . Therefore, with the significant mean value differences exhibited and the standard error separation, we consider these differences in metasomal segment morphometrics to be significant and therefore a legitimate diagnostic character. Although we see these trends for all five metasomal segments, we only establish segments III-V as significant since they exhibit standard error range separation. It must be pointed out, however, that, although the metasomal segments III-V provide important diagnostic characters, they do not show the absolute range separation as exhibited in some of the maximized ratios discussed above.

The morphometrics presented in this effort were gathered primarily from literature but several specimens were measured when necessary. The following ref-
rences provided morphometric data: Hoffmann (1931), Gertsch \& Allred (1965), Gertsch \& Soleglad (1972), Williams (1968a, 1970a, 1970b, 1971a, 1971b, 1980, 1986), Stahnke (1973), Sissom (1989b), Ponce Saavedra \& Sissom (2004), Sissom \& Hendrixson (2005), and Francke \& González Santillán (2006).

Pectines

Diagnostic value: Pectinal tooth counts are used to differentiate tribes in subfamily Syntropinae.

Syntropinae. Soleglad \& Fet (2003b: 61-65, figs. 110-113) discussed the number of pectinal teeth as it related to the mature size of the scorpion species, in particular, contrasting the four chactoid families, Chactidae, Euscorpiidae, Superstitioniidae, and Vaejovidae. In is interesting to point out here that this analysis by Soleglad \& Fet (2003b) was based on the original observation of Soleglad (1973b: figs. 13-14) that within closely related species sets (e.g., a genus) the number of pectinal teeth is proportional to the scorpion species adult size; that is, larger species in a related species set will exhibit a larger pectinal tooth count than a smaller species in that same set. And, important to taxonomic analysis, the ratios derived from these comparisons differ across different species sets, thus providing a gross diagnostic indicator at the genus level or higher. In their analysis, based primarily on published data, Soleglad \& Fet (2003b) demonstrated that pectinal tooth numbers in the family Vaejovidae is considerably higher than that found in the other three chactoid families, exhibiting, on average, an increase exceeding well over 100% (i.e., as it relates to the species mature size). Consequently, a character was established in their cladistic analysis (character 103), where the more developed pectines was shown to be a synapomorphy for family Vaejovidae. See Soleglad \& Fet (2003b: appendix D) for details and assumptions used in their analysis.

In this analysis, the data were recalculated to include all vaejovid species where the information was available (149 species). In particular, we use this metric to establish a significant difference in pectinal tooth numbers between the two tribes of subfamily Syntropinae, with that of tribe Stahnkeini being considerably higher (i.e., the ratio value is smaller) than that found in Syntropini. This was also discussed in Soleglad \& Fet (2006).

The Total Length (TL)/Pectinal Tooth Count (PTC) ratios (female only) by genus are as follows (min-max (mean) (sdev) (sdev-range) [n]):

Gertschius $=1.517-1.923$ (1.720) [2]
Serradigitus $=1.429-2.484$ (1.942) [15]

