

Figures 150-157: Iurus asiaticus. 150-154. Male, Çamlıyayla, Mersin,Turkey. 155-157. Female, 4 km E Kaşlıca Village, Adıyaman, Turkey. 150. Carapace and close-up of lateral eyes. 151. Stigma III, left. 152. Telson and metasomal segments IV-V, lateral view. 153. Sternite VII. 154. Sternopectinal area. 155. Sternopectinal area. 156. Right chelicera, ventral and dorsal views. 157. Tarsus and partial basitarsus, right leg IV.

Figure 158: Trichobothrial pattern of Iurus asiaticus, male. Çamlıyayla, Mersin, Turkey.

Figures 159-164: Chela, lateral view, Iurus asiaticus, adults unless otherwise stated. 159. Male, Kaşlıca, Adıyaman, Turkey. 160. Male, Yaylaüstü Village, Kahramanmaraş, Turkey. 161. Male, Eski Mantas Village, Adana, Turkey. 162. Male, Çamlıyayla, Mersin, Turkey. 163. Female, Kaşlıca, Adıyaman, Turkey. 164. Female, Yaylaüstü Village, Kahramanmaraş, Turkey. Note, in adults, the movable finger lobe is positioned distal of finger midpoint and the fixed finger proximal gap is conspicuously present in adult males.

Pedipalps (Fig. 158). Well-developed chelae, with long fingers, heavily carinated, scalloping of chelal fingers conspicuous: lobe on movable finger visible, positioned slightly beyond midpoint; proximal gap of fixed finger well-developed. Femur: Dorsointernal, dorsoexternal and ventrointernal carinae serrated, ventroexternal rounded. Dorsal and ventral surfaces irregularly granulated, internal and external surfaces with line of 12 and 17 serrated granules, respectively. Patella: Dorsointernal and ventrointernal carinae serrated, dorsoexternal and ventroexternal rounded and crenulated; exteromedian carina strong, serrated, and doubled medially. Dorsal surface sparsely granulated; ventral surface smooth; external surface smooth with serrated exteromedian carina; internal surface smooth, with well-developed, doubled DPS and VPS. Chelal carinae: Complies with the " 8 -carinae configuration". Digital (D1) carina strong, smooth to granulated; dorsosecondary ($D 3$) smooth with subtle granulation; dorsomarginal (D4) serrated, doubled; dorsointernal (D5) serrated; ventroexternal (V1) strong and serrated, terminating to external condyle of movable finger; ventrointernal (V3) rounded, smooth to granulated, continuous to internal condyle; external (E) strong, continuous, and serrated; internal (I) irregularly serrated. Chelal finger dentition: Median
denticle ($M D$) row groups oblique and highly imbricated; $10 / 10 I D$ s on fixed fingers and $12 / 12 I D s$ on movable fingers; $10 / 10 O D$ s to socket on fixed fingers and $15 / 15 O D$ s on movable fingers. No accessory denticles present. Trichobothrial pattern (Fig. 158): Type C, orthobothriotaxic, typical of genus (but see below on neobothriotaxy in this species).

LEGS (female, Fig. 157). Both pedal spurs present on all legs, lacking spinelets; tibial spurs absent. Tarsus with conspicuous spinule clusters in single row on ventral surface, terminating distally with a pair of enlarged spinule clusters. Unguicular spine well-developed and pointed.

Hemispermatophore (Figs. 165-171). We have examined several hemispermatophores of I. asiaticus, spanning major parts of its distribution range (Mersin, Kahramanmaraş, and Adıyaman Provinces; see map in Fig. 60). The hemispermatophore of I. asiaticus is unique among Iurus species, exhibiting a short lamina with a pointed terminus, a wide pointed medially positioned internal nodule, absence of transverse trunk bolsters, and a truncated acuminate process terminus (see below for more data).

Figure 165: Close-up of median area of hemispermatophore, Iurus asiaticus. Top. Right hemispermatophore, dorsal and ventral views, Tut District, Adıyaman, Turkey. Bottom. Right hemispermatophore, dorsal and ventral views, Central District, Kahramanmaraş, Turkey.

Figure 166: Close-up of median area of right hemispermatophore, Iurus asiaticus, Çamlıyayla, Mersin, Turkey. Top. Externodorsal, internoventral, and ventrointernal views. Note, a lightly sclerotized fragment has peeled away from median area. Bottom. Dorsal and ventral views.

Figure 167: Close-up of median area of left hemispermatophore, Iurus asiaticus, ventral and dorsal views. Tarsus, Mersin, Turkey. Note a well developed internal nodule, a truncated acuminate process terminus, and a seminal receptacle in ventral view (reflection of receptacle is visible in dorsal view).

Male and female variability. The overall morphology of the chela exhibits significant sexual dimorphism (Figs. 159-164). In the sexually mature male, the movable finger lobe is conspicuous, fitting into an equally well developed fixed finger socket with a proximal gap. In the female, the lobe and socket are not as developed and the proximal gap is missing. There is no significant sexual dimorphism in morphometrics. The metasomal segments are relatively longer in the male, but the MVDs across all five segments only favored the male by 4.6 to 9.0% when compared to the segment's width. Pectinal tooth counts in males exceed those of females by approximately one tooth (1.09), male 10-13 (11.67) [18], female 9-12 (10.58) [22] (see histograms in Fig. 73). The genital operculum of the male is different from that in the female (Figs. 154-155). The sclerites, subtriangular in shape, are as long as or longer than wide in the male, whereas in the female the sclerites are short and wide, more than twice as wide as long. Whereas the sclerites are fused medially in the female, they are separated along their entire length in the male, exposing significantly developed genital papillae. The enlarged genital operculum of the male extends distally between the lateral lobes of the sternum partially obscuring its proximal region. Figures 172-173 and 177-180 show dorsal and ventral views of both male and female specimens, and various collection localities for this species.

Lectotype analysis

Three specimens from Gülek were first mentioned by Birula (1898) as Iurus dufoureius; these were likely the first Anatolian specimens of Iurus available to researchers. The subspecies Iurus dufoureius asiaticus was described, however, only five years later when Birula had a chance to compare it to the Crete and mainland Greece specimens. In a very brief comparative paragraph, Birula (1903) wrote (talking about a population of Iurus dufoureius from Crete) (Figs. 174176):
[p. 297:] [p. 297:] "Two good specimens from the vicinity of the town of Candia [now Iraklio, Crete] - one female with 9 pectinal teeth, about 82 mm long, another, probably male, with larger pectines (also with 9 teeth) and a triangular genital plate, 74 mm long. Both of these specimens do not differ from specimens found in [mainland] Greece (10-11 pectinal teeth); however, the Anatolian (Gülek specimens) somewhat differ from the typical ones (from Greece) in the following: the larger female from Gülek is dark-brown with strong green shine; telson ventrally strongly hirsute; chela dorsally with distinct but smooth carinae; carapace coarsely granulated, but with smooth spaces between the rows of granules; metasomal segment I somewhat rough between ventral carinae; [p. 298:] also pectines with 12 teeth. Thus Anatolian specimens can be, not without a jus-

112
Figures 168-171: Hemispermatophore, Iurus asiaticus (right hemispermatophore unless stated otherwise). 168. Tut District, Adıyaman, Turkey, dorsal and ventral views. 169.
Çamliyayla, Mersin, Turkey, left, ventral view, right, ventrointernal view. Note, a lightly sclerotized fragment has peeled away from median area. 170. Tarsus, Mersin, Turkey, left
hemispermatophore, ventral view. 171. Central District, Kahramanmaraş, Turkey, dorsal and ventral views.

Iurus asiaticus Birula, 1903						
	Çamlıyayla, Mersin, Turkey	Kaşlıca Village, Adıyaman, Turkey				Yaylaüstï Village, Kahramanmaraş, Turkey
	Male	Male	Female	Female	Male	Female
Total length Carapace length Mesosoma length Metasoma length	$\begin{aligned} & 72.90 \\ & 11.35 \\ & 20.30 \\ & 29.20 \end{aligned}$	$\begin{aligned} & 84.05 \\ & 12.10 \\ & 25.40 \\ & 33.70 \end{aligned}$	$\begin{aligned} & 82.60 \\ & 12.15 \\ & 27.95 \\ & 30.30 \end{aligned}$	$\begin{aligned} & 88.15 \\ & 12.75 \\ & 30.45 \\ & 32.30 \end{aligned}$	$\begin{aligned} & 83.50 \\ & 11.65 \\ & 28.95 \\ & 30.80 \end{aligned}$	$\begin{aligned} & 80.80 \\ & 11.45 \\ & 30.50 \\ & 27.30 \end{aligned}$
$\begin{gathered} \text { Segment I } \\ \text { length/width } \end{gathered}$	3.95/4.55	4.45/4.80	4.20/4.95	4.30/5.20	4.30/4.85	3.65/4.65
$\begin{gathered} \text { Segment II } \\ \text { length/width } \end{gathered}$	4.55/4.00	5.20/4.50	4.70/4.30	4.90/4.55	4.90/4.30	4.20/4.25
$\begin{gathered} \text { Segment III } \\ \text { length/width } \end{gathered}$	4.95/3.70	5.50/4.10	5.20/3.90	5.40/4.20	5.30/4.00	4.60/3.80
$\begin{gathered} \text { Segment IV } \\ \text { length/width } \end{gathered}$	6.00/3.35	6.70/3.70	6.05/3.50	6.60/3.75	6.15/3.55	5.45/3.45
$\begin{gathered} \text { Segment } V \\ \text { length/width } \end{gathered}$	9.75/3.15	11.85/3.55	10.15/3.30	11.10/3.55	10.15/3.30	9.40/3.25
Telson length Vesicle length width/depth Aculeus length	12.05 8.45 $3.25 / 3.10$ 3.60	12.85 9.20 $3.95 / 3.50$ 3.65	$\begin{gathered} 12.20 \\ 8.40 \\ 3.60 / 3.35 \\ 3.80 \end{gathered}$	12.65 9.15 $3.75 / 3.50$ 3.50	12.10 8.65 $3.65 / 3.35$ 3.45	11.55 7.90 $3.30 / 3.00$ 3.65
Pedipalp length	43.20	50.45	48.00	49.70	48.60	42.55
$\begin{aligned} & \text { Femur } \\ & \text { length/width } \end{aligned}$	11.40/3.90	12.95/4.05	12.40/4.20	12.85/4.40	12.10/4.10	10.80/3.35
$\begin{aligned} & \text { Patella } \\ & \text { length/width* } \\ & \text { DPS height** } \end{aligned}$	$\begin{gathered} 10.45 / 4.10 \\ 1.35 \\ \hline \end{gathered}$	$\begin{gathered} 12.10 / 4.30 \\ 1.60 \\ \hline \end{gathered}$	$\begin{gathered} 11.45 / 4.20 \\ 1.30 \end{gathered}$	$\begin{gathered} 12.10 / 4.55 \\ 1.70 \end{gathered}$	$\begin{gathered} 11.10 / 4.25 \\ 1.70 \end{gathered}$	$\begin{gathered} 10.15 / 3.90 \\ 1.40 \end{gathered}$
Chela length Palm length width/depth Fixed finger length Movable finger length	21.35 10.25 $5.60 / 7.25$ 10.20 13.05	$\begin{gathered} 25.40 \\ 11.85 \\ 6.60 / 8.65 \\ 11.85 \\ 14.90 \end{gathered}$	24.15 11.60 $5.95 / 7.65$ 11.35 14.35	24.75 11.85 $6.40 / 8.30$ 12.10 15.30	25.40 11.00 $6.30 / 8.10$ 11.10 14.25	$\begin{gathered} \hline 21.60 \\ 10.40 \\ 6.15 / 7.10 \\ 10.05 \end{gathered}$
Pectines teeth middle lamellae	$\begin{aligned} & 13-13 \\ & 2-2++ \\ & \hline \end{aligned}$	$\begin{gathered} 11-10 \\ 3-4 \end{gathered}$	$\begin{gathered} 11-11 \\ 3-3 \end{gathered}$	$\begin{gathered} 12-11 \\ 2-2 \\ \hline \end{gathered}$	$\begin{gathered} 11-11 \\ 3-3 \end{gathered}$	$\begin{gathered} 11-11 \\ 1-2 \\ \hline \end{gathered}$
Sternum length/width	2.75/2.50	3.15/2.25	3.25/2.60	3.45/2.70	2.90/2.15	3.25/2.80

Table 6: Morphometrics (mm) of Iurus asiaticus Birula, 1903. * Patella width is widest distance between the dorsointernal and externomedial carinae. ${ }^{* *}$ DPS height is from tip of spines to dorsointernal carina center.
tification, separated as a subspecies of Jurus dufoureius (Brullé), which I name here Jurus dufoureius asiaticus Birula, 1903." (transl. from German).

We received photographs (courtesy of Viktor Krivochatsky, November 2008) of all three Birula's original syntypes (ZISP 1066; see log sheet in Fig. 175): dorsal and ventral views of a subadult female, pectinal teeth 10 ; dorsal and ventral views of a subadult male; and dorsal views of an adult female (presumably with 12 pectinal teeth). Fig. 174 shows this adult female, which we designate here as a lectotype of Iurus asiaticus. Fig. 176 shows the original type series label for this species.

In the photograph of the female lectotype, we can observe the following: the movable finger lobe of the chela is positioned distally on the finger, in a ratio of 0.517 ; a proximal gap is not present on the fixed finger;
and the interocular area of the carapace is somewhat smooth, delineated by the strongly developed mediolateral ocular carinae. Morphometric ratios derived from the pedipalp chela of the female lectotype (the chelal length as compared to the palm depth, movable finger length, and palm length) are consistent with those of three adult females of I. asiaticus measured in this study (see Table 6). Finally, the movable finger lobe ratio of the female lectotype is consistent with that for I. asiaticus (see scatter chart in Fig. 56).

Discussion

I. asiaticus has the second most distally positioned movable finger lobe in the genus, only exceeded by that

Figure 172: Iurus asiaticus. Dorsal view. Adult male, 2 km W Yaylaustu Village, Kahramanmaraş, Turkey.
of I. kraepelini. The movable finger lobe ratio is larger in the male than in the female, $0.475-0.580$ vs. $0.460-$ 0.540 (ratios calculated from adults with carapaces 11 mm long or larger; see scatter chart in Fig. 56 for a complete analysis of this character).

The hemispermatophore of I. asiaticus (Figs. 165171) has been examined from four specimens, each from a separate locality (see map in Fig. 60). Unique to this species is the relatively short lamina. As can be seen in Tables 2 and 3, I. asiaticus exhibits the smallest morpho-
metric ratio values across all species in all four ratios. In part, this is due to the relatively short lamina: when the lamina length is compared to the trunk length, I. asiaticus shows a 22 to 68% in MVD; and in the ratio that compares the lamina distal length to its basal length, we see MVDs of 48 to 172%, a very significant value. The lamina terminus is somewhat pointed, especially when compared to its wide and pointed internal nodule. The internal nodule is situated suprabasally on the lamina, in a ratio 1.7. The acuminate process terminus is

Figure 173: Iurus asiaticus. Dorsal view. Adult female, 4 km E Kaşlıca Village, Adıyaman, Turkey.
truncated as in most other Iurus species. Transverse trunk bolsters are absent. The paraxial organ sleeve was not detected in the five hemispermatophores examined.

In Appendix C, we present a complete analysis of the morphometric trends across the five species of Iurus. This analysis shows that the palm length of I. asiaticus dominated in a large majority of morphometric ratio comparisons: averaging 20 comparisons out of 25 for
males and 24 for females. This dominant morphometric was combined with the telson length, a measurement with the least dominance in ratio comparisons (it only dominated in five to six morphometric comparisons), to form a diagnostic character for I. asiaticus. Figure C7 in Appendix C presents the histograms of the chela palm length as compared to the telson length. This morphometric, consistent in both genders, provides decent

Figure 174: Iurus asiaticus Birula, 1903, female lectotype, Gülek Pass (Gülek Boğazı, Cilician Gates), Taurus Mts., Adana, Turkey (photograph courtesy of Viktor Krivochatsky, St. Petersburg, Russia). The left pedipalp is situated closer to the photographic plane and therefore is somewhat out of focus.
diagnostic separation for I. asiaticus from the species closest geographically, I. kraepelini, exhibiting 12.2 and 18.8 \% MVDs for the male and female, respectively.

Only once was neobothriotaxy encountered among the 20 specimens of I. asiaticus examined, in a male
from Çamlıyayla District, Mersin Province. See Appendix B for more information.

Material Examined (31 specimens). TURKEY: Adana Province: Kozan District, Eski Mantaş Village, Beşiktaş
Kovařík, Fet, Soleglad, \& Yağmur: Iurus Revision
${ }^{117}$

Figure 176: Locality label for original type series of Iurus asiaticus. Top. Original label. Bottom. English translation.
area, $37^{\circ} 30^{\prime} 43^{\prime \prime} \mathrm{N}, 35^{\circ} 52^{\prime} 31^{\prime \prime} \mathrm{E}, 29$ August 2004, 450 m asl, 1 §̂, leg. E. A. Yağmur \& H. Karaoğlu (MTAS); Pozantı District, Belemedik ("Belemedek Mara, Baracken"), 1914, 1 §̂, 1 Q, 2 imm. (SMFD 24518); Pozantı District, E of Pozantı, $37^{\circ} 26^{\prime} 02^{\prime \prime} \mathrm{N}, 34^{\circ} 53^{\prime} 57^{\prime \prime} \mathrm{E}$, 8 June 2007, 1 đ sbad., 1 đ juv., leg. E. A. Yağmur \& A. V. Gromov (MTAS). Adıyaman Province: Tut District, 4 km E of Kaşlica Village, southern slopes of Akdağ Mts, $37^{\circ} 48^{\prime} 34.6^{\prime \prime} \mathrm{N}, 37^{\circ} 59^{\prime} 21.9^{\prime \prime} \mathrm{E}, 1183 \mathrm{~m}$ asl, 8
 sbad. (FKCP), leg. E. A. Yağmur \& G. Çalışır. Kahramanmaraş Province: Central District, Süleymanlı Village, 23 April 1966, 1 đ̂, 1 ¢ sbad. (NHMW); Central District, 2 km W of Yaylaüstü Village fork in the road to Andırın, $37^{\circ} 34^{\prime} 333^{\prime \prime N}, 36^{\circ} 35^{\prime} 6^{\prime \prime} \mathrm{E}, 1237 \mathrm{~m}$ asl, 21 June 2007, 1 q sbad., leg. M. Z. Yıldız (MTAS), 23

June 2007, $1 \delta^{\lambda}, 1 \delta^{\wedge}$ juv., 3 q sbad., leg. E. A. Yağmur, M. Yalçın \& S. Dudaklı (MTAS). Mersin Province: Çamlıyayla District, Namrun (now Çamlıyayla), 16 May 1967, 1 §, leg. F. Ressl (NHMW 11325); Çamlıyayla District, near Çamlıyayla Village, 1100-1200 m, 9 May 1998, 1 O sbad., leg. A. Plutenko (FKCP); Çamlıyayla District, Çamlıyayla Plateau, $37^{\circ} 08^{\prime} 19 " \mathrm{~N}, 34^{\circ} 50^{\prime} 25^{\prime \prime} \mathrm{E}$, 425 m asl, 12 May 2008, 1 \&, leg. A. Akkaya \& İ. H. Uğurtaş (MTAS); Tarsus District, "Haci Hamfal" (?Haci Hamzali), $1 \widehat{o}^{\lambda}$ (MNHN RS 3007); Tarsus District, 1 km from Taşobası Village, $37^{\circ} 05^{\prime} 55^{\prime \prime} \mathrm{N}, 34^{\circ} 55^{\prime} 40$ "E, 209 m asl, 24 April 2009, $1 \delta^{\lambda}$ sbad., leg. M. Z. Yıldız (MTAS). Niğde Province: Ulukışla District, Madenköy Village, 1710 m asl, 27 July 1970, 1 ㅇ, leg. F. Spigenberger (NHMW 70/282).

Figure 177: Collection locality of Iurus asiaticus. Taşobası Village, Mersin, Turkey.

