Syllabus

Course Phy.261-101 math Enhancement for Physics 1

Catalog Course Description:

Additional aspects in mechanics (calculus, array vectors and matrices, distributions) to make College Physics 1 equivalent to University Physics 1. 1 hour lecture.

Credits 1 Credit (undergraduate)

Pre-req: <u>PHY 201</u> and <u>PHY 202</u> with "C" or better, <u>MTH 229</u> with "C" or better.

Term/Year 2022 Fall

Class Meets: M_, 3:30-4:30pm, Aug.22 till Dec.02 + Dec.05 @3³⁰ in Science 179

MU's Academic Calendar lists other important dates (at http://www.marshall.edu/academic-calendar/)

Instructor: Curt W. Foltz, office Sci.159, email <u>foltzc@marshall.edu</u>, phone (304) 696-2519 office hours: M_W_F 9:30-10:30; _T_R_ 10-12 & 1-3pm; _W_F 3:30-5pm; __F 11:30-1pm

Required Text and Materials University Physics, 14th ed, by Young & Freedman, © Pearson, 2016, or other comparable University Physics textbook (*e.g.*, with "Scientists" or "Engineers" in title) <u>non-programmable</u> scientific calculator (<u>not</u> cell phone app!) ... with x^2 , \sqrt{x} , $\sin^{-1}(x)$ buttons internet access: to send & receive emails; read course topic pages & browse to links beyond them; that course web-page is at www.science.marshall.edu/foltzc/261_22f.htm time & effort: outside of class, 2 or 3 effective hours/week to do assignments & practice problems.

Student Learning Outcomes Students will:	Practiced	Assessed
know basic facts and theories about mechanical strength	classwork & homework	exams
& motion, wave & thermal phenomena		
identify molecule stress & strain, and rotations	classwork & homework	exams
relate concepts & explanations by math & logic	classwork & homework	exams
read & interpret verbal descriptions accurately	classwork & homework	exams
recognize and use physics vocabulary correctly	classwork & homework	exams
predict Forces, times, Energies, and momenta for	classwork & homework	exams
simplified model scenarios at many size scales		
compare measured observables with predictions	classwork & homework	exams
synthesize rolling and wave descriptions	classwork & homework	exams
estimate some corrections to classical theory	classwork & homework	exams
judge the validity of model approximations	classwork & homework	exams
show how corrected measurements lead to different	classwork & homework	exams
numerical predictions for observables		

Course Requirements homework (50%) will be assignd each week, due at the next meeting.

Students will explain their solutions to hw, and participate (via discussion) amid the instructor's lectures. Exam 1 (25%) will be Oct.10, Exam 2 (25%) will be Dec.05 Letter Grades: 100% > A > 90% > B > 80% > C > 70% > D > 60% > F

The instructor may **slightly lower** (but not raise) any letter-grade boundary at semester's end.

Attendance & active participation at all class meetings is required.

Students in quarantine or isolation will attend remotely *via Teams* with USB web-cam & microphone. Missing several classes in a row will require extra effort afterward, to make up for the classes missed.

Policies - valid for ALL Classes at Marshall

By enrolling in this course, you agree to Marshall University policies.

Please read the full text of each policy listed below, at www.marshall.edu/academic-affairs/policies/

- Academic Dishonesty Policy
- Academic Dismissal Policy
- Academic Forgiveness Policy
- Academic Probation and Suspension Policy
- Affirmative Action Policy
- Dead Week Policy
- D/F Repeat Rule
- Excused Absence Policy for Undergraduates
- Inclement Weather Policy
- Sexual Harassment Policy
- Students with Disabilities (Policies and Procedures)
- University Computing Services Acceptable Use Policy

MU's official COVID-19 protocols and other updated info is at http://www.marshall.edu/coronavirus/

Course Schedule:

week 1	i,j,k unit vectors, column & row vectors, cross-product determinant method for Torque	4%	
week 2	3-d static Force & Torque situations with posts, beams, ropes & springs ; internal stresses	4%	
week 3	derivatives of object-quantity time functions for x , mx ; v , p ; a	4%	
week 4	multiple objects & subjects for system & subsystem options; dry friction, drag, & viscosity	4%	
week 5	integrate location functions for Action & Work ; PE's for gravity, spring, pressure, Gravity	4%	
week 6	derivatives of $U(x)$ functions to find Force, equilibrium, & orbits (Lenard-Jones, Yukawa)	4%	
week 7	x 7 oscillation from $U(x)$ curvature; frequency, angular frequency, phase; diff eq ; add solutions 4%		
week 8	Exam 1	25%	
week 9	integration to find & normalize M, MR, MR ² internal and M, U_G , g external	4%	
week A	coupled oscillators & normal modes ; resonance ; damped & driven oscillators	4%	
week B	stress & strain moduli , deformations as wave displacement amplitudes (trig multipliers)	4%	
week C	wave function arguments ; stress & energy density amplitudes ; wave power flow	4%	
week D	molecule heat capacity & latent heats ; KT pressure, ideal gas & Van der Waal corrections	4%	
week E	Works done on PV in isobar, isochor, isotherm, adiabat ; TS for Rankine & Carnot	4%	
finals we	eek Exam 2	25%	