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F,u, ACT'Ivt l tEs are central to rnaking rnult inretr ic biological indexes effec-
t ive (Karr and Chu 1997):

l .  C lass i fy ing env i ronments  to  de f ine homoge neous sets  wi th in  or
across ecoreg ic lns  (e .g . ,  s t reAms,  lakes,  or  wet lands;  large or  smal l
s t reams;  warm-water  or  co lc l -water  lakes;  h igh-  or  low-grad ient

s t reams;  depress ional  or  f low- through wet lands) .

2 .  Se lect ing measurab le  a t t r ibutes that  prov ic le  re l iab le  and re levant
s ignals  about  the b io log ica l  e f fec ts  o f  human act iv i t ies .

3 .  I )eve lop ing sampl ing protoco ls  anc l  des igns that  ensure rhar  rhose
hio log ica l  a t t r ibutes are measured accurate ly  and prec ise ly .

4 .  Dev is ing analy t ica l  procecJures to  ext ract  and undersrand re levant
pat terns in  those data.

5 .  Communicat ing the rcsu l ts  to  c i t izens and po l icymakers  so that  a l l
concerned communi t ies  can cont r ibute  to  env i ronmenta l  po l icy .
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Our ab i l i ty  to  protect  b io log ica l  rcsources depends on our  ab i l i ty  to  ident i -

fy and predict  the ef fects of  human act ions on biological  systems, especial ly

our abi l i ty  to dist inguish between natural  and human-induced var iat ion
in biological  condi t ion.  Thus, even though measures taken at  p laces with

l i t t le or no human inf luence (e.g. ,  only f rom "reference" s i tes) may tel l

us sornething about natural  var iabi l i ty  f rom place to place and through

t in-re at  undisturbed si tes,  they cannot te l l  us anything about which biologi-

cal  at t r ibutes rner i t  watching for s igns of  human-caused degradat ion.
To f ind thcse signs, sarnpl ing and analysis should focus on mult ip le s i tes

within s imi lar  environments,  across the range frorn minimal to severe

human disturbance.
One coul<l  choose sampl ing s i tes that  represent di f ferent intensi t ies of

only one hunran act iv i ty,  such as logging, grazing, or chemical  pol lut ion.  I t

would then be possible to evaluate biohrgical responses to a changing "dose"

of a s i r rg le human inf lucnce .  T 'hough rare,  such a study opportuni ty could

help ident i fy the biological  response signature character ist ic of  that  act iv i ty
(Karr  et  a l .  1986; Yoder and Rankin lq95b).  Knowledge of  such biological

response signatures would give researche rs a diagnostic tool ftrr watersheds

inf luenced by unknown or mult ip le hurnan act iv i t ies.  [n real i ty,  however,  i t

is virtually in-rpossible to find rcgions influenced by only a single l 'ruman

act iv i ty,

In most c i rcumstances, diverse human act iv i t ies interact  ( . .g. ,  dur ing

urbanization) to affect conditions in watersheds, water bodies, or strearn

rcaches. [n such cases, s i tes can be grouped ancl  p laced on a gradient accord-

ing to act iv i t ies and their  ef fects:  in<lustr ia l  ef f l r . rent  is  rnore toxic than
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domestic effluent, for example, and both pose more se rious threats than low

dams, weirs,  or  levees (Figure 5).  Rcmoval of  natural  r ipar ian corr idors
damages streams, but conversion to a part ia l ly  herbaceous r ipar ian area is

less r lamaging than conversion to r iprap. Streams grouped this way show

striking and systematic differences in biological condition across the gradi-
ent of  human disturbance (Figure 6).

1. Classify sites according to the amount of effluent present.

Littfe Much

Within each of these broad classes, rank sites according to the types
of effluent.

Agricultu ralidomestic
Raw sewage/
industrial

Within each of these classes, rank sites according to proximity of dams,
weirs, and levees.

Far Near

4. Within each of these classes, rank sites according to riparian vegetation.

2.

3.

Rank

Figure 5. A priori  classif icat ion system for ranking Iapanese streams according to
intensity of human inf luencc (Rossano 1995). Sites were assignecl to one of 2l
possible categories based on amount and type of eff luent, proximity of dams and

other structural alterat ions, and type of r iparian vegetation. Even without quanti-
tat ive measures from each site, this approach al lowed sites to be ranked across a
range of human inf luence.

Human influence
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Figure 6. Benthic indexes of biological integri ty (B-lBIs) for l l5 fapanese streams
(from Rossano 1995). The top panel shows B-IBIs calculated from half of the I l5-

stream data set (circles), which was used to init ial ly select and test metrics for use

in the B-IBI. The middle panel shows B-IBI values calculated from the second

half of the data set (pluses); the metrics and scoring cri teria used for these data

were the metrics and cri teria developed from the f irst half .  In the bottom panel,

all I l5 B-lBIs are plotted together; the indexes from both sets correspond closely,

ranking the streams comparably according to intensity of land use from low to

high. The range of human inf luence against which the B-lBIs are plotted comes

from rhe classif icat ion scheme shown in Figure 5.
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Section I lL Mult imetr ic Indexes Convey tsiological Inlormation 43

Sometimes a single variable can capture and integrate multiple sources

o[ influence. Relatively simple descriptol5-hurnxn population in the

watershed, percentage of impervious area, pe rcentage of land area devoted
to agriculture or urban uses, or percentage of developed area-are adequate
for regional watershed analyses (Meeuwig and Peters 1996). The percentage
o[ impe rvious area, For example, summarizes the multiple effects of paving,
building, and other consequences of urbanization, as in a recent study of

Puget Sound lowland streams (Figure 7; see also Maxted 1997). This mea-
sure provides a simple surrogate of human influence that works well at per-
centages of impervious area from near \Vo ro 60%. Unfortunately, it is less

useful in understanding the often large variation in biological condition at

some percentages of irnperviousness (..g., 3% to 8Vo; see Figure 7). Finding

the differences in human activity that can explain these biological differ-
ences requires information from the watersheds that is more detailed.

Alternatively, sites may be grouped into qualitative disturbance cate-
gclries. In a study of recreational influence on stream biology in the northe rn
Rocky Mountains (Figure 8), Patterson (1996) classed sites into four cate-
gories associated with different levels of human activity: (l) l i tt le or no
human influence in the watershed; (2) l ight recreational use (hiking, back-
packing); (3) heavy recreational use (maior trailheads, carnping areas); and
(4) urbanization, grazing, agriculture, or wastewater discharge. Patterson
demonstrated that l ight recreational activity did not substantially reduce

20

0 1 0 2 0 3 0 4 0 s 0

lmpervious area (%)

Figure Z. Benthic index of biological integri ty (B-lBI) plotted against the percent-

age of impervious area for urban, suburban, and rural stream sites in the Puget

Sound lowlands, Washington (from Kleindl 1995). Though B-lBI clearly decreas-

es with increasing impervious area, this plot offers no insight into B-[BI dif fer-

ences among sites with similar percentages of impe rvious area, especial ly at low

pe rcentages (3Vo ro l7%).
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44 Restoring Life in Running Waters

NHA LR HR

Human influence

Figure 8. Benthic indexes of biological integrity (B-lBIs) for stream sites in or
near (lrand Teton National Park, Wyoming (fiom Patterson 1996). Befbre ts-lBIs
were determined, these sites had been placed into fbur categories of'human influ-
ence: l i t t le or no human act iv i ty (NHA),  l ight  recreat ional  use ( [ -R),  heavy recre-
ational use (HR), and other (O). B-tBIs revealed no significant difference bctween
si tes wi th l i t t le or no human act iv i ty and those having low recreat ional  usc.  But

Il- lBIs were significantly lower for sites used heavily for recreation and lower sti l l
fcrr sites subjected to othe r uses-specifically, urbanization, grazing, agriculture,
and wastcwater discharge.

B-IBIs in comparison with undisturbed wate rsheds. Heavy recreat ional  use,

in contrast ,  c l id s igni f icanr ly al te r  the benthic inve r tebrates,  a l though not as

much as more- intensive uses including urbanizat ion and agr icul ture.

A sirni lar  approach was taken in a stucly of  b io logical  response to chem-

ical pollution on three cotrtinerlts: South Arnerica, Africa, and southeastern

Asia (Thorne and Will iams 1997). The arrthors classified sites according to

a pol lut ion gradient bascd on the integrat ion of  s ix rreasures of  chemical

pol lut ion.  Biokrgical  condi t ion,  as indicated by metr ics such as total  taxa

richness (fanril ies) ancl rnayfl1,, stonefly, and caddisfly richness, clearly went

down as pol lut ion went up. The biological  responses in the three tropical

regions were s imi lar ;  the patterns paral lc l  those seen in temperate regions

even though the fhunas are all vcry dif lbrent.

Data collected over a number of years at the same site(s) can also reveal

biological  responses as human act iv i t ies change dur ing that per iod.  Regard-

less o[  how one represcnts a range of  human inf luence among study si tcs,

sampling from sites with diffe rcnt intensities and types of human activity is

essential to detect and understand biological responses to human influence .
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section I lL Mult imetr ic Indexes convey Biological Inf<rrrnation

The goal  is  to compare l ike environments wi th l ike environments-tg iso-
late and understand patterns causecl  by hunran act iv i t ies at  s i tes wi th in those
l ike environments.

Too many existing studies confound patterns of human influence with
natural  var iat ion over t ime at  undisturbed si tes or across di f fercnt  environ-
ment types. In other s i tuat ions,  researchers combine measures 9f  human
act iv i ty,  the physical  ancl  chernical  manifestat ions of  those acr iv i t ies,  and
their biological consequences in a heterogeneous analysis with ambiguous
resul ts.  Those analyses may even include measures of  physical  environment
such as stream gradient. When this range of factors (diffe rent human influ-
ences on di f ferent environrnent types) is lumped in a s ingle analysis,  i t
becomes almost impossible to understand the causes or consequences of
human versus natural  events.

Consider the following analogy. Three experiments are designed: one ro
understand variation in natural biological systerns as a function of stream
size; another to distinguish the ef'fbcts of pesticide runoff on srreams of f irst,
ftrurth, and sixth order; and a third to define the effects o[ pesticides on
plants and insects. Analyzing samples from the first series of strcam sites
would tell you about biological responses to changing srream size. Samples
from the second series would i l lustrate changing human influence as a func-
tion of stream size. Samples from the third would distinguish responses of
different taxa. [t would be sil ly to mix the data from the three studies in a
single stat ist ical  analysis,  wi thout regard to which study the incl iv idual  sarn-
ples came from. Yet by using analytical procedures rhar mix the eflfects o[
natural  and human-induced var iat ion ( in a s ingle correlat ion matr ix,  for
example),  researchers are essent ia l ly  doing just  that :  they are ignor ing the
context of the different comporle nts of their dara, rnaking it diff icult to dis-
tinguish thc biological signs relevant to resource managemenr or protection.
They then confound the sources of the variance rhey see, even if their inirial
sampl ing setup would have permit ted discr iminat ion among those sources.
Univariate and multivariate analyses all too often suffer from this flaw.

Sampling only from "reference" sites creates a similar problern because
it does not provide a way to document which biological attributes vary with
human inf luence (see Premise 3l) .  Careful  thought about which var iables
best summariz.e human influence and the relationships among those vari-
ables should be the foundation of rnonitoring protocols. Oreating opporru-
ni t ies to discover biological  pat terns in relat ion ro human act iv i ty must be
toremost.
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Section II I .  Mult imerric Index
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Figure 9. Almost any biological ar
butes provide reliable signals of bi
t ion into a mulrimetric index.

Tf,. success of biokrgical monitoring programs and their use to define and
enforce biological criteria is t ied to identifying biological attributes that pro-
vide reliable signals about resource condition (Table 3). Choosing from the
profusion of biological attribures (Figure 9) that could be measured is a win-

nowing process, in which each attribute is essentially a hypothesis to be test-
ed for its merit as a metric. One accepts or rejects the hypothesis by asking,

Does this at t r ibute vary systemat ical ly through a range of  human inf luencel

When metrics are selected and organized systematically, an effective rnulti-

metr ic index can enrerge.
Knowledge of  natural  h istory and fami l iar i ty wi th ecological  pr inciples

and theory guide the definit ion of attributes and the prediction of their

behavior under varying human influences. But successful biological rnoni-

toring dcpends most on demonstrating that an attribute has a reliable

empir ical  re lat ionship-r  consistent quant i tat ive change-across a range, or

gradie nt, of human influence . Unfortunately, this crucial step is often omit-

ted in many local, regional, and national efforts to develop multimetric

indexes (e.9. ,  RBP I ,  I I ,  I I I ;  Plafk in et  a l .  1989).
The study of populations has dominated much ecological research for

decades (see Sect ion I I ) ,  so researchers st i l l  assume that populat ion s ize
(expressed as abundance or density) prnvides a reliable signal about water

resource condition. But because species abundances vary so much as a result

of  natural  environmental  var iat ion,  even in pr ist ine areas, populat ion s ize is

rare ly a rel iable indicator of  human inf luence (see Premise 14 and Premise

25). Large numbers of samples (> 25) were required, for example, to detect

smal l  (<20%) di f fere nces in number of  f ish per 100 square meters of  stream

surface area in smal l  South Carol ina streams (Pal ler  1995b).  Other at t r i -

[u165-5uch as taxa richness (number of unique taxa in a sample , inch-rding
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Table 3. Key terms used in defining biological condit ion.
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Term Definit ion

Endpoint

At t r ibute

Metr ic

Mul t inretr ic  index

A measured characte r is t ic  that  indicates t l re condi t ion of  a
bio logical ,  c l remical ,  or  physical  sysrem

Measurable parr  or  process of  a b io logical  syste rn

Att r . ibute empir ical ly  shown ro change in valuc along a
gradient  of  l ruman inf luence

A number that  integrares several  b io logical  rnetr ics to indicate
a s i te 's  condi t ion

Biological monitoring

Biological assessment

Biological  cr i ter ia

Sampl ing the biota of  a p lace (e.g. , ,  srream, a woodlot ,
or  a wet land)

Using samples of  l iv ing organisms ro evaluare the concr i t ion or
heal th of  p laces

Under the Clean Warer Acr,  numerical  values or  verbal
(narrat ive)  standards that  def ine a desired bio logicar condi t ion
fcrr a water body; legally enforceable
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rare ones) and pcrcentages of individuals belonging to tole rant taxa-have,

in contrast ,  been found to vary consistent ly and systemat ical ly wi th human

influence. Such attributes, when graphed, give rise to analogues of the toxi-

cological dose-response curve-which we call ecological dose-response

curves-where rhe y-axis represe nts the nreasured attribure and the x-axis,

measures of  human inf luence (Figure l0) .

Ecological dose-response curves differ in one crit ical respect from toxi-

cological dose-response curves. Toxicological dose-response curves usually

measure biological response in relation to dose of a single compound. Eco-
logical dose-response curves measure a biological response to the cumttlative

ecological exposure, or "dose," of all events and human activit ies within a

watershecl, expressed in terms such as percentage of area logged, riparian

condition, or pe rcentage of inrpervious area. The number of native fish species

in a midwestern stream sanrpled today, for example, reflects the cumulative

effccts of natural evcnts and human influence up to the present. The very
existence of th<lse species is the product of what has occurred before.

Graphs reveal
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Premise l0

Graphs reveal
biological responses
to human influence

.v

ttOf,.n 
the most effective way to clescribe, explore, and summ arizea set of

numbers (even a very large set)  is  to look at  p ictures of  those numbers.  .  .  .

[Off  af  l  methods for analyzing ancl  communicat ing stat ist ical  informat ion,
wel l -designed data graphics are usual ly the s implest  and at  the sarne t ime
the most powerful" (Tufie 1983:9; see also Tufte 1990, 1997). f 'ufte's rnes-
sage is nr-rwhere rnore important than in the display,  interpretat ion,  and
communicat ion oI  b io logical  monitor ing dara.

Graphs reveal  the biological  responses important for  evaluat ing metr ics
more clear ly than do str ict ly stat ist ical  tools.  They exploi t  " the value of
graphs in florcing tlre trnexpected" (Mosteller and Tukey 1977) on whoever
looks at  them, including researchers,  who must then confront and explain
the pattern in those graphs. For samples where the relationship between
human influence and biological response is strong, statistics and graphs
agree (Figure l l). In other cases, rncaningful biological patterns can be lost
by excessive dependence on the outcome of menu-dr iven stat ist ical  tests.
Stat ist ical  correlat ion can miss an i rnportant relat ionship i f  the r-var iable
(..g., percentage of area logged) is nreasured with low precision or if addi-
tional factors lreyond those plotted on the r-axis influence metric values but
are not included in the stat ist ical  analysis.

In Figure 12, for example, we plot two different aspecrs of biological
condition against one measure of human influence, such as the percenrage
of upstream watershed that has been logged. Sites are assigned a plus or
rninus on the basis o[  that  measure and other aspects of  hunran inf luence
that are v is ib le and documented bur nor plotred on the same graph. In
forested watersheds, these other aspects might include whether roads are
near or far from the stream channel, t ime since logging, or traits uniquc to
particular watersheds. In sotne cases, such interacting Factors may degrade
biological condition (roads near the stream channel would worsen logging's
effects), or they may allow good conditions to persist (roads on distant ridges



Rest<.rr ing l- i fe in Running Waters

High Low

Human influence

FigUre l l. Example of two hypothetical metrics plotted against a gradient of

hu,r,"n influer-rce. Here statistical correlation and graphical analysis agree: metric

A is a goocl inc{icaror, and metric lJ is not. (compare Figure 12.)

have less effect on streams). The distribution of pluses and boxes in Figure

l2 i l lustrates the fallacy of assuming that a biological metric says nothing

about condition because it does not correlate strongly with a single surrogate

of that condition, as researchers perennially assume when a biological mea-

sure does not correlate with some measure of chemical pollution. Rather, we

should conclude that the surrogate is not capturing significant components

of human influence and look more closely for the biological explanations

behind the data.

Not all aspects of human influence can be easily captured in a single

graph or sraris;ical test. When a numbe r of variables influence condition, a

,inlt. plot againsr one dimension of hunran influence wil l not tell the whole

,,oiy Gig".. l3); neither wil l a single statistical test. Graphs force us to

,."r.h foi insighrs rhar rore application o[ statistical tests cannot discover.

Weak starisrical correlation cat) also miss important biological patterns
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Figure 12. Hypothetical relat ionships between lruman inf luence and candidare
biological metrics (from Fore et al. 1996). Metric A is rnore strongly correlared
with resource condit ion (orr2 is higher i f  using regression) than Metric B, ini t ial ly
suggesting that i t  is a better metric. But comparing the metrics'abi l i ty to dist in-
guish between minimally disturbed sites (denoted by plus signs) and severely
degraded sites (open boxes; ranges noted by arrows) shows that Metric B is a*ual-
ly a more e ffect ive measure of biological condit ion despite i ts smaller stat ist ical
correlat ion. (Compare Figure I l .)

when the distr ibution of the data (e.g., Figure l4) does not lend i tself  to tests
based on standard correlat ion tcchniques that detect only l inear relat ion-

ships. Yet nonl inear patterns are common in f ield data (Figure l5). Consid-

er the plots in Figure 16, for example, The points f-al l  into a wedge-shaped

distr ibution, whose scatter shows l i t t le or no stat ist ical signif icance but can

be interpreted biological ly. The upper bound o[each plot is the hyporenuse

of  a  r ight  t r iang le  ( the maximum spec ies r ichness l ine)  that  def ines the num-
ber of species expected in rninimally disturbed streams as a function of

stream size (Fausch et al.  1984). The plots i l lustrate what Thomson er al.

High
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Fig,ure 13. Taxa r ichness of Trichoptera plotted against the percentage of water-

shed area that was logged for 32 stream sites in southwestern Oregon. Metric cor-

relat ion (Spearn-ran'srho) was not signif icant because, alone, the percentage of area

logged was an inaccurate measure of human inf luence; other factors, such as type

of logging, presence of roads, and other human inf lucnces, were not includetl .

When these other human inf luences were considered, to identi fy minimally dis-

turbed sites (denoted by plus signs) and severely degraded sites (open boxes), the

response of Trichoptera taxa r ichness visibly dist inguished between dif ferent

degrees of hurnan disturbance.

(1996) term a "factor cei l ing distr ibution" (see also Blackburn et al.  1992 and

Scharf et al.  1998 on ecological inferences from the edges of scatter dia-

grams). In this case, the cei l ing-maximum species r ichness-is defined by

the evolut ion o[ the regional biota. General ly at si tes where the nurnbe r of

f ish species fal ls below the cei l ingr some human activi ty in the adjacent or

upstream watershed has reduced the number of species present; alterna-

t ively, sampling might have been inadequate, "dragging" species r ichness

below the l ine.
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Metr ic A. Stat ist ical correlat ion
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yet the graphic pattern strongly
suggests a biological responsc, At
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Graphs highl ight  id iosyncrasies in data distr ibut ions that,  when exam-
ined closely,  may provide insight into the causes of  a part icular biological
pattern. At one extreme, outlying points on a graph may offer key insights
about the complex inf luence of  hurnan act iv i t ies in watersheds. The
researche r can then explore what unique situations at those sites cause them
to appear as out l iers.

Even the spread o[ data can offer insights, as i l lustrated by the large
range in B- lBIs at  s i tes wi th20Vo to 30Vo impervious area shown in Figure
17. Sites with high mayfly taxa richness (B ancl C) l ie in reaches of two
streams with relat ively intact  r ipar ian corr idors and wet lands. The si te wi th
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Figure 15. Relat ive abundance (percentage of total) of individuals belonging to
tolerant taxa in samples of benthic invertebrates from 65 fapanese streams ranked
according to intensity of human inf luence (see Figures 5 and 6). (Data provided by
E. M. Rossano.)

o a  a t  o

....

s
; B oo
c

€oo
c
5-o( U 4 0
o

20
(l)
(E

0



5

3

1

54 Restoring Life in Running Waters

oo
l o !

Section II I .  Mult imetr ic lndexes

o
U)
o
c
-c
o
L

Gx
rtt

E
o
o-
o
o
E
o
-c
o-

[!

U'

E 10
o
o-
o
.c,
.9, 0

o
o
-o
E
:t
c

E30
,o

fn

Figure |.7. Average taxa richness ,
impervious area surrounding Pug
Site A, Coal Creek, had fewer Ep
active mine in its headwaters, and
mine waste. Sites B and C had rel

orders of insects (stoneflies, ma
of the outflow from a streamsi
the magnitude of  change var ie
same graph also reveals the dir,
gitudinal transect down the str

Graphs may sometimes al l
elaborate multivariate techniqu
sis, the most often used ordinati
defines statistically orthogonal
dent biologically; interpreting
(Goodall 1954). Graphs can be a
maximum variance extracted
mathematical associations, a mr
understanding complex inform

Complex ecological situatio
can often be ecologists'most usr
logical data "before, after, and b
(Augspurger 1996). Rather thar
model before plotting their da
graphs for "reasoning about q

20

0

a
O

ao

O

i .  l '
o

. 
-it

. : .

3  t .

t
,

a

a
l
o
o
o

3 10 100 1000 5000

Watershed area (kmz;

Figure f6. Number of f ish species in relat ion to stream size(top) and watershed

area (bottom); each point represents a site. The maximum species richness line

rhrough the highest points on each graph de f ines the numbe r of species e xpected

in minimally disturbed streams or watersheds. Points below that l ine represent

sites where human activi ty has reduced the number of species present (from

Fausch et  a l .  1984) .

low mayfly taxa richness (A) is located in a stream that receives fine mater-

ial from an old coal mine. Sites A, B, and C had unique characteristics that

were best understood by examining their specific contexts, not by applying

a regression or correlation analysis. Finding these patterns then led to sub-

sequent studies in the same and in other places to determine if those patterns

were more general.
Graphs also i l lustrate variation in behavior among taxa in response to a

specific disturbance (Figure l8). For example, numbers of taxa for three



Restoring Life in Running Waters

t - -
a

4

rder

oo
l o o-ir

o a
o

a
o

a

1000 5000

rea (km2)

to strealn size (top) and watershed

re nraxitnum species r ichness l ine

irne s the numbe r of species e xpected

ls. Points below that l ine represent

runrber of species present ([rom

r a stream that receives f ine mater-

: l  C had unique characterist ics that

r specif ic contexts, not by applying

l ing these Patterns then led to sub-

rlaces to determine i f  those patterns

,havior amonfJ taxa in response to a

rample, numbers of taxa for three

Section II I .  Mult imetr ic lndexes convey Biological Infbrmation

lmpervious area (%)

Figure 17. Average taxa richness of Ephemeroptera plotted against percenrage of
impervious area surrounding Puget Sound lowland srrearns (from Kleindl 1995).
Site A, Coal Creek, had fewer Ephemeroprera than expected. This site has an
active mine in its headwaters, and Ephemeroptera are known tn be sensitive to
mine waste. Sites B and C had relatively intacr riparian areas (wetlands).

orders of insects (stoneflies, mayflies, and caddisfl ies) declined downstream
of the outflow from a streamside sludge pond in the Tennessee Valley, but
the magnittrde of change varied among the raxa (see also Premise l4). The
same graph also reveals the direction and magnitude of change along a lon-
gitudinal transect down the stream.

Graphs may sometimes al low researchers ro avoid naive appl icat ion of
elaborate multivariate techniques (tleals 1973). Principal componenrs analy-
sis, the most often used ordination technique (lames and McCullough 1990),
defines statistically orthogonal factors, which may or may nor be indepen-
dent biologically; interpreting the resulrs can therefore be complicated
(Goodall 1954). Graphs can be a superior approach to merhods rhar focus on
maximum variance extracted because they reveal ecological rather than
mathematical associations, a more appropriate criterion for organizing and
understanding complex information (Beals 1973).

Complex ecological situations require unusual analytical means. Graphs
can often be ecologists'most useful tools, permitting the exploration of'eco-
logical data "before, after, and beyond the application of 'standard 

analyses"'
(Augspurger 1996). Rather than choose an inappropriately l inear sratisrical
model before plotting their data, ecologists should exploit the poyyer of
graphs for "reasoning about quantitative information" (Tufte 1983) and
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Ephemeroptera

Trichoptera

Plecoptera

150  110  70  30

Distance from mouth (km)

Figure 18. Thxa r ichness of mayfl ies, stonefl ies, ancl caddisf l ies for si tes along the

Ncrrth Fork Holston River in the 
' I-ennessee 

Valley inl976 (from Kerans and Karr

1994). Arrow indicates the posit ion of the strearnside sludge pond. Taxa r ichnesses

for al l  three orders decl ine at the sludge pond and slowly recover fbr si tes down-

streanr.

then choose and apply appropr iate stat ist ics.  I t  is  myopic to be a s lave of  stan-

dard star isr ical  ru les and procedures- just  as i t  would be myopic to avoid

statistics altogether.
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ological
are reliable
in d iverse

A
A  s t r i k i n g  c o n c l u s i o n  f r o m  l 5  y e a r s ' r e s e a r c h  i n  s e l e c t i n g  m c t r i c s  i s  t h a t

the same major biological  at t r ibutes serve as rel iable incl icators in c l iverse
circumsrances. This resul t  has i ts advantages ancl  d isadvantages. On the
advantage side, eve ry smal l  project  ( . .g. ,  at  the county or comrnuni ty level)
need not test  and def lne i ts own l t rcal ly appl icable rnetr ics.  Scient ists and
resource Inanagers can implement local  b io logical  monitor ing and assess-
ment programs on the basis of  resul ts f rom other stucl ies.  Whcn local  stud-
ies c i te ear l ier  work.  readers can know that the rnethocls t rave bcen rested
e l .sewhere; the accumulat ing bocly of  tests ref ines,  or  re futes,  the general i ty
oFpatterns that others have def ined.

On the disaclvantage side, sonre appl icat ions of  mult imetr ic int lexes
uncr i t ical ly borrow theoret ical  or  ernpir ical  metr ics f rom other studies.  This
borrowing becotnes problemat ic when the theory is wrong or does not apply
in the study circumstance, or when metr ics are appl ied to systen)s or reginns
other than those for which they were tested. F 'or  example,  human impacts
may increase taxa r ichness in cold-water strearns (Hughes and ( iarnmon

1987; Lyons et al. 1996), as cool- and warm-water species enter areas where
wate r  temperatures have bce n raised by act iv i t ies that  a l te r  r ipar ian vegeta-
t ion.  [n contrast ,  in eastern warm-water streams, human inf luence com-
monly decreases species r ichness cxcept for  a l iens (Karr  et  a l .  1986).  Thus,
you cannot make ic lent ical  assumptions about metr ics o[  f ish taxa r ichness in
the two contexts.

Simi lar ly,  a benthic invertcbrate metr ic fbr  sof t -bodicd organisms (e.g. ,
o l igochaetes,  t ipul id f l ies,  and other grubl ike forms) of ten indicates de-
gradei l  condi t ions in North Arner ica,  but in fapan, the better metr ic is leg-
less organisms, a grouping that includes the soft -bodicd organisms but also
shel led snai ls and mussels.  In North America,  mussels ancl  snai ls are rnore
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often indicators of  h igh-qual i ty environments,  but  in |apan, most of  these

taxa are al ien or othe rwise indicat ive of  degraded condi t ions.

The botrom line is that metrics should be based on sound ecology and

adapted only with great care beyond the regions and habitats for which they

were devekrped. E,xploring biological patterns to discover the best biological

s ignals ( that  is ,  metr ics) should mix graphs, convent ional  stat ist ics,  and

thoughtful conside ration of regional natural history.
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TrackinEcomplex
systems requires a
measure
multiple

that integrates
factors

Poli.y-"kers, cit izens, and scientists faced with making clecisions about
complex systems-economies, personal health, societal well-being, an eco-

logical slstem-need multiple levels of information. Conside r some of the

indexes used to track the health of the national economy: the index of lead-

ing economic indicators, the producer price index, the consumer price

index, the cost-of-l iving index, and the Dow fones industrial average. All

these indexes integrate multiple economic factors.
f 'he index of leading economic indicators (Mitchell and Burns 1938)

tracks the U.S. econorny in terms of 12 measures: length of work week;

unemploynlent claims; new rnanufacturing orders; vendor pe rformance; net
business format ion;  equipmcnt orders;  bui ld ing permits;  change in invento-

ries, sensitive materials, and borrowing; stock prices; and money supply.
These measures are combined to form the overall index, which takes as its
reference point a standardized year (e.g., 1950); the value of the current
year's index is expressed in terms of its value in the reference year. Compos-
i te econornic indexes l ike these have survived six decades of  d iscussion and

crit icism and remain widely used by economists, policynrakers, and the

media to interpret economic trends (Auerbach 1982).

Simi lar ly,  physic ians and veter inar ians rely on mult ip le measures and
mult ip le tests to assess the heal th of  indiv idual  pat ients.  On a s ingle v is i t  to

the doctor, you might be "sampled" for urine chemistry, blood-cell counts,

blood chemistry, body temperature, throat culture, weight, or chest X-rays.

Clearly, these measurements are not independent of one another, for they

come from a single individual whose health is affected by many interacting

factors. Further, you would not expect your doctor to rely on only one spe-

cialized blood test to diagnose your overall health; rather, you assume that

mult ip le measures wi l l  g ive a more accurate diagnosis.  Patterns emerging

Premise l7
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fron'r these multiple measureme nts enable the doctor to recognize the signa-
ture of  a part icular ai lment and to suggest rnore targeted measurements i f
she suspects a certain disease. Only then could she prescr ibe t reatment.

Societal well-being obviously comprises many factors, not iust the eco-
nomic. To fr>ster well-being, policy <lecisions need to consider as many fac-
tors l ikely to be affected by the outcome as possible. Multiattribute modcls
have becn developed ro aid this kind of decision making by quantifying the
effects of alternative decisions on multiple societal attributes (Gregory 1987).

Multirnetric biological indexes calculated from ambient biological mon-
itoring data provi<le a sirnilar integrative approach for measuring condition
and "diagnosing" causes in complex ecological systerns. The same logical
sequence appl ies in compi l ing mult imetr ic economic,  heal th,  societal ,  or  b io-
logical indexes. First, identify reliable and meaningful response variables
through testing; rhen measure and cvaluate the system against expectations;
f inal ly,  interpret  the measured values in terms of  an overal l  assessment of
system condition. The resulting index (for economic or biological resources)
or diagnosis (for patients) allows people without specialized expertise to
understand overal l  condi t ion and to make informed decis ions that wi l l  then
affect the health of those economies, resources, or patients.

Most multimetric biological inclexes fcrr aquatic systems comprise 8 to
l2 metrics,l each selectecl bccause it reflects an aspect o[the system's bic-rlog-
ical  condi t ion.  These metr ics are not independent because they are calculat-
ed frnm a single col lect i<-rn of  organisms, just  as mult ip le personal  heal th
tests are done on a s ingle indiv idual .  But evcn i f  metr ics are stat ist ical ly cor-
related, they are not nccessar i ly  b io logical ly redundant.  Rather,  just  as a
fever plus a high white-blood-cel l  count reinforces a diagnosis of  bacter ia l
infection, multiple nretrics all contribute to a diagnosis of ecological degra-
dation, or ecological "disea.se." Moreover, when more than one metric points
to similar reasons for degradation, there is less uncertainty (Smith 1994).

Even when some redundancy exists among metr ics,  mult ip le l ines of  evi-
dence are valuable.

The two most common IBIs fur  streams have bcen developed, tested,

and appl ied using f ish (Karr  l98l ;  Mi l lcr  et  a l .  1988; Lyons 1992a; Fore et  a l .
1994; Lyons et al. 1995,1996; Simon 1998) and benthic inve rtebrates (Ke rans
and Karr 1994; Kleindl 1995 Rossano 1995,19961' Fore et al. 1996 Patterson
1996). tsoth incorporate known attributes frorn multiple levels of biological
organization and different temporal and spatial scales. Typically, patterns

I  For species-poor environments such as cold-water st rcams, the tota l  number of  metr ics is

l ikely to be snral ler  (e.g, ,  I -yons ct  a l .  199(r) .

Sect ion I lL Mult imerr ic Indexes
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eme r[Je that are the signatures of biological responses ro parricular humap
act iv i t ies (Karr  er  a l .  I986; Yoder l99lb;  Yoder and Rankin 1995b).

Fol lowing the success and widespread use of  these two inclexes, s i rn i lar
indexes are now being developed by a nurnbe r of stare agencies ro use with
invertebrates and vascular plants in wet lands (Karr  1998c);  wi th algae ancl
diatoms in strearns (Bahls 1993; Kentucky DEp 1993; Florida DEp 1996:
Barb.rur et  a l . ,  in press);  wi th diverse taxa in lakes (Har ig ancl  Bain 1998;
Whit t ier  1998);  and with plants,  invertebrates,  and vertebrates in terrestr ia l
environments (CRESP 1996; Chu 1997; Bradford er at. 1998; Blair, in press;
see also Premise 22). Extending Il l l  to new taxa, environrnent types, ancl
geographic areas is l ike learning to pract ice medicine in humans, pets,  l ive-
stock,  and others:  the expectat ion of  what const i tutes "heal th" depends on
the animal,  but  the same fundamental  d iagnost ic srrategy appl ies in al l  cases.
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Multi metric biological
indexes incorporate
levels from individuals
to landscapes

Th. success o[ nrultimetric approaches such as IBI in assessing biological

condition depencls cln choosing and integrating metrics that reflect diverse

responses of biological systetns to human actions. Ideally, a multimetric

index would cover all such responses, but the costs of developing such an

index would be much too high. A set of chosen metrics is necessarily a com-

promise between " too narrow" and " too broad";  i t  is  a lso a compromise of

choices among convenient ly measurcd biological  surrogates of  important

biological phenomena. Metrics wil l evolve and expand ove r the next decade

as researchers apply th is approach in diverse regions and habi tats and for

different organisms. Sti l l , a fundamental tenet of IBI is to deliberately

choose merr ics cover ing the range of  b io logical  s ignals avai lable f rom dis-

turbed systems.
IBI is nor a community analysis in ei ther o[  the colnmon uses of  the

word community.IRI does not e xamine all taxa but is gene rally based on one

or rwo assernblages (which Fauth et  a l .  t l996J de f ines as phylogenet ical ly

related groups of organisms), such as fish or be nthic invertebrates. Neithe r

does a mult imetr ic I I l l  focus on the comntuni ty level  in the standard text-

book hierarchy of  b io logy ( incl iv idual ,  populat ion,  assemblage, community,

ecosystem, and landscape).  Rather,  the choice of  measures in a mult imetr ic

index reflects an arrempr ro represent as many of those levels as possible,

prefe rably direct ly but at  least  indirect ly.  The rcsul t ing indexes are l ikely to

pro<-luce the strongest multimetric view of biological condition (Table 4).

The best mult imetr ic indexes are more than a community- level  assessment

because they combine measurcs o. ' '  condi t ion in indiv iduals,  populat ions,

communit ies,  ecosystems, and landscaPes.
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Table 4. Types of metrics, suggested ntrmber of me tr ics of each type, and corre-

sponding levels in the biological hierarchy. Well-constructed mult imetr ic indexes
contain the sugge sted number of metr ics f iom each type and therefore ref lect

mult iple dimensions of biological systerns.

Metr ic type Number Indiv idual  Populat iou Cornmuni ty Ecosyste m Landscape

Taxa r ichness 3-5

To lc rancc ,  in to lc rance 2- t

Trophic structr lre 2-4

Ind iv idua l  hea l th  l -2

Other ecological 2-3

a t t r ibu tcs

/

Indiv idual  level .  Indiv idual  heal th manifests i rsel f  in many ways both inter-
nal ly and external ly,  through physiological  or  morphological  s igns and
metabolic or genetic biomarkers reflecting organismal stress. We have not
yet seen reliable metabolic or genetic biomarkers that can be applied broad-
ly in field studies, although in certain situations (see Surnmers et al. 1997 for
a promising example),  b iomarkers may work as secondary tools for  d iag-
nosing biological  condi t ion.  Tb date,  however,  IBI  metr ics of  indiv ic lual
heal th consist  of  easi ly detected external  abnormal i t ies;  their  f requency in an
assemblage indicates stress on indiv iduals.

In f ish,  for  example,  v is ib le s igns of  stress include skeletal  de formir ies;
skin lesions; tumors;  f in erosion; and certain diseases that are associated with
impaired environments,  especial ly large amounts of  toxic substances. Ear ly
studies of  f ish in the seven-county area around Chicago indicated high inci-
dence of  extcrnal  abnormal i t ies (Karr  l98l) ,  a pattern also apparent in Ohio
(Yoder and Rankin 1995a). Among benthic invertebrates, head-capsule
deformit ies in chironomids (midges) are strong indicators of  toxics (Harni l -
ton and Saether l97l ;  Cushman 1984; Warwick et  a l .  1987; Warwick and
Tisdale 1988). Anomalies in fish are often used as IBI metrics, but chirono-
mid head-capsule deformities are rarely incorporated into the benthic ItsI
because so much laboratory work is required to stain indiv idual  insects,
mount them on sl ides,  and count thern.

ln other studies, tadpoles collected in a coal ash deposition basin had
fewer labial teeth than tadpoles from reference areas (Rowe et al. 1996).
They also had deformed labial papil lae, which would l imit the foods they
could eat and thus their  growth.  F- ish in Gulf  of  Mexico estuar ies showed
higher numbers and frequencies of several pathologies at heavily clisturbed
si tes than at  minimal ly disturbed si tes (Summers et  a l .  1997\.  Final ly,  in a
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meral-conraminated l {ocky Mountain r ive r  in Colorado, per iphyt ic diatoms

of the genus Fragiluria had defbrmecl cells (McFarland et al. 1997).'the

percentage of deformed cells ranged from 0.2Vo * 0.2 to l2Vo + 2.0 frorn low

to fi igh levels of contamination by heavy metals (cadmium, copper' iron,

and zinc).

Populat ion level .  Seve ral  metr ics in both the f ish and benthic IBIs int l icate,

i f  not  rhe detai ls of  populat ion demography, the relat ive condi t ion of  com-

ponenr groups. Usual ly,  a popular ion nrust  be v iable at  a s i te before one can

consistent ly c letect  a specics '  prese nce. For example,  the lack of  intolerant

taxa among fish or invertebrates or of clingcrs (taxa that cling to rocks)

arnong the invertebrates is a strong signal rhat populations of these organ'

isms are doing poorly. The absence of darters, sunfish, and sucke rs among

the fishcs and of mayflies (Ephcmeroptera), stoneflies (Plecoptera), antl cad-

disfl ies (tichoptera) arnong the invertebrates suggests that viable popula-

t ions of  many species wi th in these taxa cat)not maintain themselves. The

presence or absence of ce rtain age classes, such as large olcl f ish, among cold-

water salmonicls may also be a useful  nretr ic.

Assemblage level .  Changes in the chemical ,  physical ,  and biological  cnvi-

ronment resul t ing f rom hurnan acr iv i t ies al ter  assemblages. These changes

may appear as changes in species composi t ion or species r ichness (conven-

t ional  measr l res of  comrnuni ty structure).  They may also appear as al tered

rrophic structure,  such as decreases in top carnivores or increases in omni-

vores! or as shiFts from specialists to generalists in food or reproductive

[abi ts (ref lect ing shi f ts in foocl-web organizat ion or changing avai labi l i ty  of

microhabi tats for  spawning).  Mult i rnetr ic int lexes incorporate th is inf t r rma-

r ion by inclur l ing rnetr ics such as the percentage of  predators,  omnivores'  or

other feecling groups and also species richness and the relative abundance of

al ien f ishes ( in streams) or of  vascular plants ( in wet lands and terrestr ia l

environments).
Conside rable theoret ical  d iscussion has centered on " funct iotral  feeding

groups" of  North Ame r ican benthic invertebrates (Cummins 1974; Cum-

mins et  a l .  1989; Cummins et  a l .  1995).  In part icular,  according to the r iver

conr inuunr hypothesis (Vannote et  a l .  1980),  the relat ive abtrndance of  these

groups is predicted ro change along the length of a river or stream. For

example,  in cclmparison with headwaters,  which are Presumed to rcceive

mostly allochthonous organic matte r (from outside the stream), downstream

reaches might have rnore f i l ter- feeders or net-spinning caddisf l ies taking

aclvantage of  h igh in-stream product ion.  lJut  the r iver cont intrum hypothe -
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sis does not seern to apply c()nsistent ly across North Ame r ican streams (Van-

nore er al .  1980; Winterboum et al .  l98l ;  Minshal l  et  a l .  1983).  Mctr ics based

op Functional fecding groups arnong benthic invertebrates (with the possible

exception o[ relative predator abunclance) l ikewise responcl differently in

di f fcrent streams (Karr  1998b).

This inconsistent response differs frotn what might be a more general

parrern of  t roplr ic metr ic behavior in f ishcs;  perhaps the trophic structure of

f ish assemblages in North America is more consistent than lbr  benthic

invertebrares.  Al ternat ively,  perhaps more is kr town atrot t t  rhe natural  h is-

tory of  f ishes, perrni t t ing better del ineat ion of  fbeding groups. C)r  our

knovvledge o[  invertebrates may bc less prccise,  or  i r tvertebrates mxy be

more opportunist ic.  The general i ty of  t rophic group response t t l  d isturbance

deserves more careful  analysis,  but ,  nreanwhi le,  be careful .  Despi te a wide-

ly accepted rheory,  metr ics pertaining to funct ional  feeding groups among

benthic invertebrates may or may not be good indicators; their dose-

response retat ionships to l ruman inf luence r) tust  be careful ly tested and

established for rnultiple data sets and circutnstances before they shotrld be

used in a mult imetr ic index.

Landscape level .  Regardless of  level  in rhe biological  h ierarchy ( indiv ic luals,

species,  ecosystem),  the persistence of  l iv ing th ings depends on hetero-

genei t ies in space and t ime. Spat ia l  heterogenci t ies are v is ib le in l i t toral

zonat ion,  in vegetat ion bands associated with water depth in marshes, or in

associat ion wi th soi l  moisture and skrpe gradients on dr ier  land. Stream f ish

spend their l i fetime in many microhabitats; they are exposed to tl i fferent

flows and other temporal shifts as days ancl seasons change. Eggs laid in

main-channel  gravels become fry hiding in s ide channels and along the

banks. Fry grow into juveniles large enough to avoid the preclators that

would otherwise eat them. fuveni les may then move into the deep pools

those predators inhabit and where food supplies also differ.

Finding food, avoicling predators, seeking spawning habitat-any

acr iv i ry in an organism's l i fe cycle-are subject  to and dependent on such

heterogeneities in space and time . For some specics, the scale of moveme nts

may extend only a few cent imeters;  for  others,  the scale can be hundreds or

thousands o[mi les.  The loss of  spat ia l  or  tempc)ral  components of  these het-

erogenei t ies can change a species'  d istr ibut ion or abtrndance, or cat lse i t  to

disappear al together.  
' I 'he 

presence or absence of  anaclromous or other

migrarory f ishes (e.g. ,salmon, bul l  t rout)  is  thus a landscape- level  indicator.

Dams, al ien predators,  and al tered water f lows ant l  temperatures interfere

with their  movements through a landscape, t lecimat ing these species.
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Incorporat ing several  mult imetr ic indexes ( f ish IBI ,  benthic IBI ,  a lgal

IBI) into a biological monitoring program is a good way to capture the con-

dition of assemblages that respond to human disturbances at different scales.

Different taxa in the same or different assemblage reflect the presence of a

broad range of heterogeneities. If top predator taxa needing large home

ranges or long-lived taxa requiring years to mature are present, for example,

you can infcr that the spatial and ternporal components they require are also

present. Excessive in-stream production or numerous herbivorous fishes or

invertebrates would characrer ize heavi ly grazed landscapes, where r ipar ian

corr idors may be damaged and excessive nutr ients f iom l ivestock wastes are

enter ing the stream.

D.u.lopment of IBI to date has involved a conscious effort to span the

variety of biological contexts. But rnuch remains to be done. Better measures

of indiv idual  heal th are needed, as are measures betrer def in ing demo-

graphics. Strengthening the connections between measures of food web

and trophic structure and more-direct  measures of  nutr ient  cycl ing and

energy f low would also improve mult imetr ic assessment.  Final ly,  landscape

metr ics t t rar  emphasize overal l  b io logical  condi t ion (nurnber of  nat ive

community types or cumulative taxa richness across a warershed) are also

needed. Ideally, metrics of landscape condition should be more than a surn

of site-specific assessments.

Throughour development and use of  mult imetr ic indexes, great care

musr be taken to measure biological condition, not stressor intensity. Bio-

logical  surrogates of  b io logical  condi t ion are essent ia l ;chemical  and physical

surrogates of biological condition are not acleqtrate by themselves.

Developed and applied properly, the multimetric IBI incorporates and

depends on known components of biology-components specific to locali-

t ies and taxa-across the organizational hierarchy and from disparate spa-

tial and temporal scales. The result is a synthesis of biological signals that

reveal the effects of human activit ies at diffbrent levels, in different places,

on diffe rent scales, and in response to a ranfJe of human activit ies.

Metrics are select
to yield relevant
biologi cal informi
at reasonable cosl
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Premise | 4

Metrics are selected
toyield relevant
biologi cal i n format ion
at reasonable cost

,-rr
I  hc index of  b io logical  integr i ty f i rst  developed for f ish (Karr  l98l ;  Karr

et al. 1986) incorporatcd l2 metrics from three biological categories: species
r ichness and composi t ion,  t rophic composi t ion,  and incl iv idual  condi t ion.
Later work with both fish ancl invertebrates led to somewhat different
groupings: specifically, species richness, taxonomic composition, individual
condition, and biological processes (Karr 1993; Barbour et al. 1996b) and
community structure,  taxonomic cornposi t ion,  indiv idual  condi t ion.  and
bi<rlogical processes (Fore et al. 1996). Within each broad category, some
metrics are proven for many regions and Faunas. other, *ork in some
regions or studies but not in others. Sti l l  other potential metrics based o1
theoretical ecology or toxicology may work but have not been adequately
tested, because they are either too diff icult to measure or roo theoretical to
define (Thble 5).2 The categories in Thbte 5 guide metric selection for new
regions, faunas, or habitats, btrt no metric should become part of a multi-
metric index before it is thoroughly and sysremarically resred ancJ irs
response has been validated across a gradient of human influence.

The choice of hclw to actually express each metric is as important as
selecting the metric itse lf. You could simply counr the numb., of in,l ividu-
als in a target group and express it as population size, abundance, or densi-
ty (Figure 19, top); you could determine rhe proporrion, or relative abun-
dance, of the total number o[ individuals belonging to a targer group

2 Unfortunately,  untested or  too theoret ical  at t r ibutes have been centra l  to EpAs rapid
bioassessment protocols (RBP I ,  I I ,  I I I ) ,  used s ince 1989. Many rneasures incorporarecl  into
RBP I I I  we rc never adequately tested,  and tesrs (Barbour et  a l .  1992; Ke rans et  a l .  1992;
Kerans and Karr  1994; Barbour et  a l .  1996a; Fore er  a l .  1996) now incl icate that  thev do
not meet r igorous standards for  accept ing metr ics.



Table 5. Sample biological attributes, in four broad categories, that might have potential as metrics. Acrual monitoring protocols havc
proven some of these attribures effective; orhcr attributcs may work but need more testing; still orhers are difficult to measulc or too
theorctical. Ideally, an IBI should include metrics in each ofthese categodes, but unrcsted or inadequately tested attribures should not
be incoroorated into the final indcx.

Category Demonstrated effective Need more testing
Difficult to measure or
too theoretical

Taxa richness

Tolerance, intolerance

Trophic structure

Indiv idual  heal th

Other ccological
attributes

Total taxa richness
Richness of maior taxa,

e.g., mayflies or sunfish

Thxa richness of intolerant organisms
Relative abundance of green sunfish
Relative abundance of tolerant taxa

Trophic organization,
e.g.. relative abundance
of predators or  omnivores

Relative abundance of individual fish
with deformities, lesions, or tumors

Relative abundance of individual
chironomids with head-capsulc
deformitics

Growth rates by size or age class

Dominance (relative abundance
of most-numerous taxa)

Number of rare or endange red taxa

Contaminant levels in rissue
(biomarkers)

Age structure of target species
population

Relative abundance distribution, after
Preston (1962)

Chironomid species (difficult to identify)

Productivity

Metabolic rate
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relationships, as Figure l9 shows; knowledge of natural history and of

which sampling protocols are most efficient should guide your choice.

Popul:rt ion size-besides being diff icult and often costly to determine

with sufficient precision (Paller et al. 1995b), especially for rare species-is

not a good measure because it is naturally too variable; irrespective of

human impacts (Karr l99l). Work in Puget Sound lowland streams, for

example, found no systematic relationship in two successive years between

benthic invcrtebrate abundance and the percentage of impervious area in

the upstrearn watershed, one measure of human influe nce (Figure 20).

Similarly, ratios of two groups in an assemblage do not respond system-

atically to human influe nce, largely because ratios are composed of two fac-

tors that can respond, and thus vary, independently of each other, making it

a '

. i .

400
a a

a '
o o l

0

1 200

o

0 o

400 ! r

a

20

lmpervious area (%)

Figure 20. Number of invertebrates plotted against impervious area for lowland

Puget Sound streams in two successive years.
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impossible to draw firm conclusions about the relationship of the ratio to
human inf luence (see Premise 25).  Further,  two large numbers and two
smal l  numbers may yield the same rat io,  a l though the biological  meaning of
smal l  and large nunrbers may be very di f fe rent (Kerans and Karr  1994). l {
both components o[ the ratio are important, it is more appropriate to con-
sider them separately.  (This reasoning also appl ies in the case o[  d iversi ty
indexes, which combine r ic l tness and relat ive abundances. The atrr ibutes
should be kept distinct with separate metrics.)

Metrics related to feeding ecology or trophic structure are best expressed
as relat ive abundan6s-f61 example,  the number of  indiv idual  predators,
omnivores,  or  scrapers div ided by the total  number o[  sampled indiv iduals.3
The relative abundance of organisms at various levels in a stream's trophic
organization reflects the condition of the food web, including energy flow
and nutrient dynamics, but relative abundances are much easier to measure
than true production or energy flow. If we know what to expect from min-
imal ly disturbed si tes in a region, we can then f ind the deviat ions caused
by htrman activit ies from that expectation. T'he relative abundance of f ish-
eat ing f ish in rninimal ly disturbed streams, for  example,  is  l ikely r .obeZAVI
or more; omnivores,20Vo or less.  In c legraded strernrs,  the relat ive abun-
dance of  omnivores is l ikely to be much higher (>40Vo).

N{aior taxonomic groups are best evaluated in terms of taxa richness,
because as human act iv i t ies damage a stream and i ts watershed, nat ive taxa
tend to disappear.a A decline in taxa richness is generally one of the most
rel iable indicators of  degradat ion f lor  many aquat ic groups (Ford 1989; Bar-
bour et  a l .  1995).  These include per iphyton (Bahls 1993 Pan et  a l .  1996);
phytoplankton (Schelske 1984); zooplankton (Sternberger and Lazorchak
1994);  r iver f ish (Karr  l98l ;  Mi l ler  et  a l .  1988; Ohio EPA 1988; I l ivera and
Marrero 1994; Rodriguez-Olarte and Taphorn 1994 Lyons et al. 1995,1996;
Koizumi and Matsumiya 1997); lake fish (Minns et al. 1994); esruary fish
(Thompson and Fitzhugh 1986; Deegan et al. l99j; Weaver and Deegan

3 Al though th is metr ic  looks l ike a rat io,  i t  is  actual ly  a proport ion-1hs value of  a var iable

div idcd by a constant  f lor  the sample.  Proport ions : r re more re l iable as indicators because

they are based on a binomial  d ist r i t rut ion (Fore et  a l .  1996).  In contrast ,  the rar ios of  rw<r

taxa or  two funct ional  feeding groups comprise two var iables f rom t l re sample;  combining
them in a rat io has ser ious stat is t ical  consequences,  producing a Cauchy dist r ibut ion
(Hannaford and Resh t995).

a Ta*a r ichness can be standardized per uni t  of  area (e.g. ,  taxa per 0.1 square meter)  or  per
count of  indiv i< luals (e.g. ,  taxa per 500 indiv iduals) .  The proper choice is  hot ly  debated,  a
topic we cover in m<lre detai l  in  Premise 29.
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1996; Deegan et al. 1997;' Hartwell ct al. 1997); freslrwater invertcbrltes
(Ohio I ' ,PA 1988; Reynoldson and Metcal fc-Smith 1992; Kerans and Karr

1994; DeShon 1995; Fore et al. l()96; Thorne and Will iams 1997); and
marine invertebrates (Sumrncrs ant l  Engle 1993; Engle et  a l .  19941'  Weisberg
et al. 1997).

An except ion to th is pattern ar ises when al ien taxa are involved. 
' l "he

presence o[al ien taxa is a c lear indicat ion of  human inf luence. F-urthermore,
in cliverse regicins, from l\Vo to l5o/o of alie n taxa are considered harmf'ul
becausc they have "a s igni f icant impact on ec()system heal th" ( l \4 i l ls  et  a l .
1998).  For exarnplc,  of  more than 4500 al ien taxa in the Uni ted States,  near-
ly 700 are considered harmful .

Jirxa richness rnay be calculated fcrr an entire sample or for subgroups,

such as f ish fami l ies or insect orders.  that  use t l ' re strearn environment in a
part icular way. Sunf ish,  for  exarnple,  feed in the wate r  column or at  the sur-
face of pools, whereas suckers feed in benthic pool environments, and
darters or sculpins fcecl  in benthic r i l f le environments.  E,ach requires the

unique structural  complcxi ty and cover associatecl  wi th those part icular
feeding environments;  the inte ract ions of  cover,  structural  complexi ty,  and
changing food abundances resul t ing f rom hurnan act ions may cause decl ines
in al l  these groups. Because rheir  natural  h istor ies di f fer ,  these three taxa
provide informat ion about the condi t ion oF three cl i f fcrent habi tat  types

within a stream. Loss of  sucke r  taxa points to a problem, such as sedimenta-

t ion,  wi th in the benthic pool  environment.  I -oss of  sunf ish suggests loss of

physical  covcr and their  invertcbrate foods from the pelagic and surface
zones of  pools;  indeed, insccts decl ine at  the surface whe n r ipar ian vegeta-

r ion is lost .  Simi lar  infbrmat ion may be gained from the taxa r ichness of
l i thophi lous ("rock- loving")  spa\ /ne rs or nurse ry species.

Arnong benthic invertebrates,  the taxa r ichnesses of  Ephemeroptera
(mayflies), f)lecoptera (stoneflies), and Trichoptera (caddisfl ies) rcflect dif-

fere nt types o[ degradation. Ephe rr-reropte ra taxa are lost when toxic chem-
icals l ike those fronr nr inc wastes fbul  a stream (see Figure l8;  Hughes 1985;

Kiffney ancl Clen-rents 1994). Plccoptera taxa tl isappear as riparian vegeta-

t ion is lost  ancl  scdiment c logs the interst i t ia l  spaces among cobbles.  Ple-

coptera tend to c lecl ine at  lcss intense levcls of  human inf luence rhan Tr i -

choptera or Ephemeroptera.  ThereFcrre,  combining these three taxa into a

single " I iP ' I " '5 rnetr ic (as in RIIP I I I  and others;  Plafk in et  a l .  1989; Lenat

5 f tP ' f  is  the surn of  thc r r rayf l ies (Ephemeroptcra) ,  s tonef l ies (Plecoptera) ,  and cacl . l is f l ies

(Tr ichopte ra)  f i rund in a benthic i r tver te l r rate sarnple.

Sect ion I I I .  Mult imerr ic Indexes C
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abundance, see Premise 20, Figur



Restoring t-if-e in Running Waters

1997); f ieshwater invertebrates

t-Smith 1992; Ke rans and Karr

lrorne arrd Will iams 1,997); and

1993; F,ngle et  a l '  1994; We isberg

ren al ien taxa are involved'  
' l 'he

f  hurnan inf luence. F'urthermore,

l ien taxa are considered harmtul

n ec()system heal th" (Mi l ls  et  a l '

n taxa in the Uni ted States,  near-

I  ent i re samPle or for  subgrouPs,

use the strealn environn' Ient  in a

in t l ' re wate r  column or at  the sur-

benthic pool  environlnents,  and

:nvirotrmetr ts.  Each requircs the

associated with rhose part icular

c()ver!  structural  conrplexi ty,  and

: lurr lan act ions may cause decl ines

historrcs clif-fer, these three taxa

of three cli{tferent habitat types

; to a problem, such as sedimenta-

t. I-oss c,[ sunfish suggests loss o[

r ls f ronr the Pelagic and st t r face

hc surface when r iPar ian vegeta-

g; ' r int ' . I  f ronr the taxa r ichness of

rrrrserv species.

xa r ichnesses of  E,Phemeroptera

ichoptcra (cadt l is f l ies) ref lect  d i f -

ri l  tax:l :rre lost when t<lxic chem-

eam (scc  F- igure  l8 ;  Hughes 1985;

: rxa  , l i sappear  as  r ipar ian  vegeta-

, t i t ia l  spaces among cobbles'  Ple-

els of  human inf luence than Tr i -

ornbining t l tese three taxa into a

ot l rers;  Plafk in et  a l .  1989; Lenat

s tone ( l i cs  (P lecoptera) ,  and cac ld is f l ies

r 1 r l c .

Sect ion I I I .  Mul t imet r ic  Indexes Convey Bio log ica l  In f<rnnat ion 73

and Penrose 1996) may obscure real diffcrences that could help diagnose
both the types and sources of degradation at a site .

The signals provided by intole rant ancl  to le rant taxa mean that the best
expression of  me tr ics based on these taxa is not the sarne for intole rants and
tolerants.  The me re prese nce of  very sensi t ivc,  or  intolerant,  taxa (as appar-
ent from taxa richness) is a strong indicator of good biological condition; the
relat ive abundance of  intolerant taxa, in contrast ,  is  d i f f icul t  to est imate
accurately wi thout extcnsive and cc,st ly sampl ing ef for ts.  Presence alone oF
tolerant taxa, on the other hancl ,  says l i t t le abotr t  b io logical  condi t ion s ince
tolerant groups inhabi t  a wide range of  p laces and condi t ions.  As condi t ions
deter iorate,  however,  their  re lat ive abunclance r ises (see F- igure22). ln gen-
eral ,  we recommend that only about l0% (no fewer than5Vo or nrore than
l5%) of  taxa in a region should be classed as intole rant or to lerant. ' fhe point
of these metrics is to highlight the strong signal coming from presence of the
most intolerant or most to lerant taxa, the two ends of  a cont inuum. We
avoid the average tolerance value calculated in biot ic indexes because the
strong signals of  to lerants and intolerants are swarnped by the remaining
70Vo t<t 90% of taxa with intermediate tolerances.

(For a more statistical rationale for choosing taxa richness and rclative
abundance, see Premise 20, Figure 34.)



Multimetric indexes
are built from

metrics and
system

A.ros taxonomic groups, many of the same biological attributes indicate
human-induced disturbance (see Premise l4; Table 6). Numerous srudies
have helped define the most broadly applicable metrics (Karr l98l; Mil ler et
al. 1988; Kerans and Karr 1994; Fore et al. 1996; Scott and Hall 1997; Voshell
et al. 1997;see Barbour et al. 1996b for summary table of metrics). Afte r test-
ing in a se ries of independent studies, l0 attributes of stream invertcbrates
and l0 to 12 at t r ibutes of  stream f ishes consistent ly emerge as rel iable indi-
cators of biological condition at sites influenced by different human acrivi-
t ies in different geographic areas (Thbles 7 and 8; see also Table 5).6

Consistently reliable metrics include the total number of taxa present in
a sample (total taxa richness), the nurnber of particular taxa or ecological
groups (e.g., taxa richness of darters or mayflics), the number of intolerant
taxa'  and the percentage of  a l l  sampled indiv iduals (relat ive abundance)
belonging to stress-tolerant taxa (e.g., tubificid worms). Among fishes, a
high percentage of individual f ish with disease, f in erosion, lesions, or
tumors indicates toxic chemicals in a stream. Increased frequency of hybrids
seemed a useful  metr ic in ear ly IBI  studies (Karr  l98l ;  Karr  et  a l .  1986),
although relatively few studies since then have used it successfully. Increased
hybridization could indicate a loss of habitat variety and consequenr mixing
of gametes from different species spawning in a homogenized environment
(Hubbs l96l ;  Greenf ie ld er al .  1973\.

6 Thc number of  metr ics in the f ish IBI  is  somewhar smal ler  in re lat ively s imple sysrems
such as cold-water st reams (Lyons et  a l .  1996),  Wet lan<ls rnay be mosr appropr iate ly
assessed wi th rnul t ip le taxa (e.g. ,  p lants,  insects,  f ish,  b i rds)  wi th fewer metr ics for  each
IBI  based on a given taxon or  assemblagc.
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Table 6. Regardless of taxon used or habitat sarnpled, similar metrics respond

predictably (t) to human inf l trence. As human inf luence increases, taxa r ichness

decl ines, the relat ive abundance of general ly tolerant organisms increases, and
general ly sensit ive taxa disappear. (Sources: See pages 7l-72, Premise 14.)
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The values of metrics such as these provide the best and most complete
assessment of a sitet condition, but to compare sites and communicate their
relative condition to the widest possible audience, metric values at a site are
summarized in the form of an aggregate index-the index of biological
integrity. Because human actions af fcct biological resources in nrultiple ways
and at multiple scales, 10 to 12 metrics from four broad categories (see

Tables 4 and 5) are selected and then scored using standardized scoring cri-
ter ia;  these metr ics are the bui ld ing blocks o[  the mult imetr ic index (Karr

1981, l99l ;  Karr  et  a l .  1986).

Because we now know a great deal about which metrics respond con-
sistently to different levels of human effect, agency biologists with l imited
budgets do not have to test all attributes to begin using a multimetric index;
instead, they can build on studies that have been done before. Ncvertheless,
whenever more than five sites with different human influences can be sam-
pled, we encourage testing of metric responses in particular locales to see
whether the patterns observed elsewhere can be generalized.

Before bui ld ing a mulr imetr ic index, you must convert  metr ic data into
a common scoring base. Typically, metrics are quantif ied with different
units and have different absolute numerical values (e.g., numbers of

taxa may range from 0 to a few dozen; relative abundances of certain groups
may range from 0% to 100%). Also, some mctrics increase in response to
human disturbance (e.g., percentage of omnivores) while others decrease

, / /
(ge neralists)



Table Z. Potcntial metr ics for lrcnthic stream inve rtebrates. Metrics that
responrlcd to human-inclucecl disturbance as predicted are indicated by a check
(/);  t l rosc markcd with a dash (-) were nor tesred. Percenr sign (vo) denores
relat ivc abundance <lf  individtrals belonging to the l isted raxon or group(s). Metr ics
markcd wi th  an aster isk  ( * )  have been inc luded in  a  lO-rnet r ic  mul t i rcg ional
B-lBI (Karr 1998a; see also Table I l ) .  Human inf luencc in the Tennessee Vallcy
consisted primari ly of mining and agriculture; in southwestern Oregon, logging
and road bui lding; in north-central Oregon, altering r iparian condit ion; in t f te
Puget Sound lowlands, urbanization (rneasured by pe rcentage of irnpe rvious
surface); in Iapan, rnult iple human inf luences; ancl in Wyorning, recreation.

Predicted Tcnn. SW

Sect ion I lL  Mul t imetr ic  InrJexes (

Table 8. Metr ics used in the origin
midwestern U.S.  s t rearns and equi '

Original f ish IBI

Number of  f ish species
Nurntrer  of  darter  specics
Number of  sunf ish species
Number of  srrcker species
Number of  into lerant  specics
Relat ive abundancc of  green sunf ish

Relat ive abundance of  omnivores
Relat ive abundance of  insect ivorous

cypr in ids

Relat ive abundance of  top carnivores
Number  o f  i nd i v idua ls
Relat ive abundance of  hvbr ids
Relat ive abunclance of  d lseased indiv idu

o Metr ics choscn vary as a f i rnct ion of  st r
water), and ecological factors to reflect
t iv i ty  to d i f ferent  human inf luences.
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Simple, uniform rules fbr settir

Metr ic

Plecoptera taxa*
Tr ichoptera taxa*
Long- l ived taxa*
l)ipter:r taxa
Chirononr idae taxa

Tolerants and intrslerants
Into lerant  taxa*
Scdiment- inroleranr raxa
7o tolerantx
Vo sedimcnt-toleranr
Vo planaria + anrphipods
% ol igochaetes
Zo chirorromids
Va very to lerant
Vo "leglcss" organisms

Fecding and other habits
7o ptredators*
7o scrapers
o/o garherers
Vn Ftlterers
7o ontnivores
7o shredders
Vo mud burrr-'we rs
"Cl inger"  taxa r ichncss*

Population attributes
Abunclancc
l)ominancc*

response Vallev Ore,
NC
Ore.

Puget
Sound

NW
n W

Thxa richncss and composition
'ftrtal 

number of taxa* Decreasc
Epherneroptera raxa* Decrease

,/ ,/ ,/

/ / , /

;
,/

, / /
/ o /

/ /
,/

De cre ase
I)ccrease
Decre ase
I)ecrease
I  ncrease

Dccreasc
f)ecrcase
I  r rc rea se
i  ncrease
Incrcase
Increase
Increasc
I nc rea se
I  ncrease

Decrease
Var iahle
Var iable

Var iable

I  ncreasc
I)ecrease
I  ncreasc
I)ecrease

Var iable

I trc rease

,/

/

o -I'axa 
richness at sediment surface
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Table 8. Metr ics used in the original f ish index of biological integri ty ( l l l l )  for

midwestern U.S. strearns and equivalents for more general appl icat ion.

Original f ish IBI General f ish IBI '

1 1

invertebrates. Metrics that

rret l icted are indicated by a check

:sted. Percent sign(Vo) denotes

r the l isted taxol l  or group(s) '  Metr ics

:d in a l0-lnetr ic rnult iregional

'  inf luetrce in the Tennessee Valley

; in southwestern Oregon,logging

Itering r iparian condit ion; in the

ecl by Pcrce ntage of irnPervious

;  ant l  in  WYorning'  recreat lon '

Numher of fish species
Nurnher of  darter  specics
Number of  sunf ish spccics
Number of  st tcker species
Number of  into lerant  species
Relat ive abundance of  green sunf ish

Relat ive abundance of  omnivore s
Relat ive abundance of  insect ivorous

cypr in ic ls

Relat ive abundance of  top carnivores
Numbe r  o f  i nd i v idua ls

Relat ive abundance of  hybr ids
Relat ive abundance of  d iseased indiv iduals

Number of  nat ive f ish specie s
Numbe r  of  r i f f le  -be nthic inscct ivores
Number of  wate r  colurnn insect ivorcs
Numbe r  of  pool-benthic insect ivorcs
Numbe r  o[  int<-r le rant  spccies
Re  la t i ve  abundance  o f  i nd i v idua ls  o f

to lerant  species

Rclat ive abundance of  omnivores
Relat ive abrtntJarrce of  insect iv<lres

(specia l ized i  nsect ivores)
Re lat ive abundance of  top carnivores
Not a rcliablc metic
Not often uscd succcssfully
Rclat ive abundance of  d iseased indiv i r i r ra ls

SW N(l Puge t NW
jrc. ( )re. Sc,und laPan Wvo'

,//

/
,/

/ , / /

/ / /

,/
,/

'Metr ics chosen vary as a funct ion of  st ream siz.e,  temperature c lass (warrn- ,  cool- ,  cold-
water) ,  and ccological  f -actors to ref lect  b iogeographic and other pat te rns,  inc luding sensi-

t iv i ty  to d i f ferent  htrman inf luences.

(e.g., overall taxa richness). To resolve such differences, cach metric is
assigned a score based on expectations for that metric at n'rinimally dis-
turbed site(s) for that region and stream size. Metrics that approximate what
biologists would expect at minimally disturbed sites are assigned a score of
5; those that deviate sornewhat from such sites receive a score of 3; those that
t leviate strongly are scored I  (Karr  1981, l99l ;  Karr  et  a l .  1986).  The f inal
rndex is the sum of al l  the metr ics '  scores (Figtrre 2l) .

In all cases, the basis for assigning scores is "reference condition," that
:s.  the condi t ion at  s i tes able to support  and maintain a balanceci ,  integrated,
.rnd adapt ive biological  systern having the tul l  range of  e lements and
;.rocesses expected for a region; thus IB[ explicit ly incorporates biogeo-

;raphic var iat ion into i ts assessment of  b io logical  condi t ion.  In some regions,
: 'rologists can actually f ind and sample frorn sites that have not been influ-
, : rced, or have been inf luenced only minimal ly,  by humans. In other regions,
. ' .  here pr ist ine s i tes are unavai lable,  b io logists may have to infe r  re ference

'ndi t ion based on knowledge of  the evolut ionary and biogeographic
:( ,ce sses operating in the region (see Premise 3 I ). In sti l l  other case s (F'ausch

- '  . r l .  1984; Hughes 1995; Hughes et  a l .  1998),  researchers must dcpend on
.trrr ical  data,  col lected when human act iv i ty was less,  to def ine reference
: r r l i t ion .

Simple, uniform rules fbr setting scoring criteria-the range of numerical

,/

,/
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Fig,ure 21. Range and numeric values for six invertebrare merrics from a severely
disturbed site ( lower Elk Creek, v) and a less disturbed site (East Fork Cow
Creek, r) in southwestern Oregon. Because the metrics have dif ferent quanrirat ive
va lues,  they are g iven scores (5 ,3 ,  l )  to  pr r t  them on the sarne sca le :5  ind icates l i t -
t le or no deviat ion from expected, or re ference, condit ion; 3 indicates mode rate
deviat ion from expected condit ion; and I indicates srrong cJeviat ion from expected
condit ion. Vert ical l ines in the f igure represenr the curoff points fbr assigning
these metric scores. Total benthic IBf (B-lBI) value for these rwcr sires equals the
sum of these metric scores and f ive orhers (from Fore et al.  1996).

va lues that  qual i fy  a  metr ic  for  a  score o f  5 ,3 ,  s1 l -31s thus d i f f icu l r  to
specify because they depend in part on the sampling design rhar generared
the data. In a hypothetical watershed where one-rhird of sampled sites were
pr ist ine,  one-third moderately disturbed, and one-third highly disturbed,
the values for each metr ic could s imply be div ided at  the 33d and 67th
percent i les.  But human act iv i t ies tend to h<lmogenize landscapes and l iv ing
systcms so that a major i ty of  s i tes in a given warershed are l ikely to be mod-
erately or even severcly degraded, such as in the )apanese stucly i l lustrated
in Figure 22. In the real  wor ld,  therefore,  i t  makes sense to err  on the
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conservat ive s ide by expanding the middle score (3) or even the low score ( l )

to include more sites rather than fewer, thus making it more diff icult for a
site to attain a high score.

Natural  shi f ts or breaks in the distr ibut ion of  metr ic values can guide
the setting of scoring criteria; indeed, scoring criteria should bc adiusted to
fall at these points, because the points often reflect a biological response.
Where metr ic values incrcase or decrease l inear ly across the gradient of
human influence (Figure 22,top), as in tt-rtal taxa richness, the values are typ-
ical ly t r isected into three cqual  d iv is ions,  each represent ing the cr i ter ia for
assigning a score of  1,3,  or  5.  Other metr ics,  such as relat ive abunclance of

l .o l .  r
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Figure 22. Plots of two sample metrics showing dif ferent ways ro se t the cri teria
fcrr assigning metric scores of 1,3, and 5. For metrics with a monotonic, or l inear,
distr ibution (e.g., total taxa r ichness: top),one divides into roughly equal thirds the
range from 0 to the highest value. For metrics that are nor distr ibuted monoroni-
cal ly, one uses natural breaks in the distr ibution to define score boundaries (shown

in the bottom plot by vert ical dotted l ines). Metr ic values and classif icat ion scheme
for human inf luence come from Rossano (1995) (see also Figures 4 and 5).
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tolerant organisrns or particular trophic groups, respond in a more skewed

pattern (Figure 22, bottorn; Figure 23); for these metrics, natural break

points suggest setting scoring criteria in unequal divisions. Setting scoring

criteria is an iterative process and should be revisited as regional databases

and biological knowledge expand.

Sediment tolerants
(ref ative abundance, o/o)

20 40 60 80 100

Number of taxa

Figure 23. Relat ive abunclance (percentage of sediment-tolerant inr l ividuals) and

taxa r ichness (numbe r of taxa) plotted against the rank order of that metric value

for 86 stream sites sampled in southwestern Oregon. Dotted vert ical l ines mark

the range of valucs (scoring cri teria) frrr scoring metrics as 5, 3, or L Most si tes

have near 0% sediment-tolerant incl ividuals; only very degraded sites show higher

values of this metric. ln other worcls, the distr ibution pattern for this metric is

skewed. Taxa r ichness, in contrast, is less skewed. Scoring cri teria are divided into

unequal divisions for skewed metrics, ref lect ing a biological response in the data

(top);the divisions are rnore equal for unskewed metrics (bottom).ln both cases,

most sitcs receive a score of 3, the most conserv:rt ive interpretat ion of condit ion.
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