Exam 1 MTH 331 Fall 2021 Total Pts:100 9/23/2021

Name:
Total Received:
Show all work for full credit.

1. State True or False. Give short reasons if possible. (10 Pts)
(a) A system of three linear equations in four unknowns may have a unique solution.
(b) If two nonzero vectors are LD, then each of them is a scalar multiple of the other.
(c) The system $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is consistent.
(d) If $A=[\vec{u} \vec{v} \vec{w}]$ and $\operatorname{rref}(A)=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$, then A is invertible.
(e) The rank of a 3×3 matrix A can be 1 .
(f) For matrices A and B, the formula $A^{2} B=B A^{2}$ holds.
(g) The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 x-3 y \\ -x+3 y\end{array}\right]$ is a linear transformation.
(h) The property $(A+B) C=A C+B C$ holds if the products make sense.
(i) The column vectors of a matrix $A_{n \times n}$ may not be linearly independent.
(j) If A and B are matrices of size n, then $\operatorname{rank}(A+B) \geq n$ holds.
2. (Paper-pencil) Use G-J elimination method to solve the following linear system. (8 Pts)

$$
\begin{array}{r}
x+y-z=7 \\
x-y+2 z=3 \\
2 x+y+z=9
\end{array}
$$

3. Consider the linear system

$$
\begin{array}{r}
y+2 z=0 \tag{8Pts}\\
x+2 y+6 z=2 \\
k x+2 z=2
\end{array}
$$

where k is an arbitrary constant. For which value(s) of k does this system have a unique solution or many solutions or no solution? If the system has solution(s), find all such solution(s).
4. Consider the following linear system.

$$
\begin{align*}
x_{1}+2 x_{3}+4 x_{4} & =-8 \tag{10Pts}\\
x_{2}-3 x_{3}-x_{4} & =6 \\
3 x_{1}+4 x_{2}-6 x_{3}+8 x_{4} & =0 \\
-x_{2}+3 x_{3}+4 x_{4} & =-12
\end{align*}
$$

(i) How many solution(s) do you expect from this system and why?
(ii) Find "rref" of the augumented matrix.
(iii) Write the system from part (ii) in terms of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.
(iv) Write your solutions in vector form using arbitrary constants.
5. The cost of admission to a popular music concert was $\$ 162$ for 12 children and 3 adults. The admission was $\$ 122$ for 8 children and 3 adults in another music concert. How much was the admission for each child and adult? (8)
6. Write the following linear system into the matrix form $\vec{y}=A \vec{x}$. (5 Pts)

$$
\begin{aligned}
y_{1} & =2 x_{2}+x_{3}-x_{4} \\
y_{2} & =x_{1}-2 x_{3}+3 x_{4} \\
y_{3} & =3 x_{1}+4 x_{2}+2 x_{3}-3 x_{4} \\
y_{4} & =-x_{1}+x_{3}-4 x_{4} .
\end{aligned}
$$

7. Consider the transformation T from \mathbb{R}^{3} to \mathbb{R}^{2} given by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

Is this transformation linear? If so, find its matrix. (5 Pts)
8. Given that $\operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}$, and $\operatorname{ref}_{L}(\vec{x})=2 \operatorname{proj}_{L}(\vec{x})-\vec{x}$, find the orthogonal projection of the vector $\vec{x}=\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right]$ onto the line L which consists of all the scalar multiples of the vector $\left[\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right]$. Also, find $\operatorname{ref}_{L}(\vec{x})$.
9. Compute the matrix product using paper and pencil. (6 Pts)

$$
\left[\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 2 & -2 \\
2 & 3 & -1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

10. Find the rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 4 & -1 \\ 2 & 4 & 3 & 1 \\ 3 & 6 & 0 & 3 \\ 4 & 8 & 2 & 2\end{array}\right]$.
11. Show the effects of the matrices (10 Pts)

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

on the standard "L" ([l $\left.\left.\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)$. Describe the transformations in words.
12. Find the inverse of the matrix A using row operations where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$.
13. Find all linear transformations T from \mathbb{R}^{2} to \mathbb{R}^{2} such that

$$
T\left[\begin{array}{l}
1 \tag{8Pts}\\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } T\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

(1) a) False It can have infinitely many solutions

Bailey Arkell
p. 1 or no solutionsince there are 3 equations and 4 variables.
b) Five Linearly dependent vectors are scalar multiples of athene.
c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ False $0 \neq 1$, so there is no solution.

$$
\left[\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3} \\
4 x_{1}+5 x_{2}+6 x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \operatorname{arrec}\left(\left[\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
4 & 5 & 6 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]\right)=\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

d) True it is only invertible in the form $\operatorname{rref}(A)=I_{3}$
e) True If a 3×3 matrix in ref only has 1 leading 1, then it can have a rank of 1 .
False
f) $A^{2} B=A A B=A(A B)=(A B) A=A(B A)=B(A A)=B A^{2}$ if $A B=B A$
g)

$$
\begin{gathered}
\Gamma\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x-3 y \\
-x+3 y
\end{array}\right] \\
T(\vec{x})=A \vec{x} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x-3 y \\
-x+3 y
\end{array}\right]} \\
{\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]=\left[\begin{array}{l}
2 x-3 y \\
-x+3 y
\end{array}\right]} \\
a x+b y=2 x-3 y \\
a=2 \\
b=-3
\end{gathered}
$$

True

$$
\begin{array}{cl}
c x+d y=-x+3 y \\
c=-1 \\
d=3
\end{array} \quad \Rightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
-1 & 3
\end{array}\right]
$$

h) True
i) True The column vectors could be linearly dependent.
j)

$$
\begin{array}{lll}
A=\left[\begin{array}{cc}
2 & 5 \\
-3 & 1
\end{array}\right] & B=\left[\begin{array}{cc}
7 & -5 \\
1 & -1
\end{array}\right] & A+B=\left[\begin{array}{cc}
9 & 0 \\
-2 & 0
\end{array}\right] \\
\operatorname{rank}(A)=2 & \operatorname{rank}(B)=2 & \operatorname{rank}(A+B)=1
\end{array}
$$

$$
\operatorname{rank}(A+B) \leq n
$$

$$
1 \leq 2 \quad \text { Fare }
$$

(2)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
(1) & 1 & -1 & 7 \\
1 & -1 & 2 & 3 \\
2 & 1 & 1 & 9
\end{array}\right] \xrightarrow[R_{3}+(-2) R_{1}]{R_{2}-R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & -2 & 3 & -4 \\
0 & -1 & 3 & -5
\end{array}\right] \xrightarrow[R_{2} \leftrightarrow R_{3}]{\longrightarrow}\left[\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & -1 & 3 & -5 \\
0 & -2 & 3 & -4
\end{array}\right](-1) R_{2}} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 1 & -3 & 5 \\
0 & -2 & 3 & -4
\end{array}\right] \xrightarrow[R_{3}+2 R_{2}]{R_{1}-R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 2 & 2 \\
0 & 1 & -3 & 5 \\
0 & 0 & -3 & 6
\end{array}\right] \rightarrow\left(-\frac{1}{3}\right) R_{3}\left[\begin{array}{ccc|c}
1 & 0 & 2 & 2 \\
0 & 1 & -3 & 5 \\
0 & 0 & 1 & -2
\end{array}\right] R_{1}+(-2) R_{3}} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -2
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
-1 \\
-2
\end{array}\right]}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
0 & 1 & 2 & 0 \\
1 & 2 & 6 & 2 \\
k & 0 & 2 & 2
\end{array}\right] R_{1} \leftrightarrow R_{2}\left[\begin{array}{ccc|c}
1 & 2 & 6 & 2 \\
0 & 1 & 2 & 0 \\
k & 0 & 2 & 2
\end{array}\right] R_{3}-k R_{1}\left[\begin{array}{ccc|c}
1 & 2 & 6 & 2 \\
0 & 1 & 2 & 0 \\
0 & -2 k & 200 & 2-2 k
\end{array}\right] R_{1}+(-2) R_{2}} \\
& \left.\left[\begin{array}{ccc|c}
1 & 0 & 2 & 2 \\
0 & 1 & 2 k & 0 \\
0 & 0 & 2-2 k & 2-2 k
\end{array}\right] R_{3} /(2-2 k)\left[\begin{array}{ccc|c}
1 & 0 & 2 & 2 \\
0 & 1 & 2 k & 0 \\
0 & 0 & 0 & 1
\end{array}\right] R_{2}+2 R_{3}\right) R_{2} \\
& \begin{array}{c}
2-2 k \neq 0 \\
k \neq 1
\end{array} \quad\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 k \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

unique solution: all values of k except $k=1$
NO solution: Does not occur for this system
infimany solutions: $k=1$
(4) (i) I expect a unique solution or no solution since there are 4 equations and 4 variables. These could be infinitely many solutions.
(ii) $\operatorname{rref}\left(\left[\begin{array}{cccc|c}1 & 0 & 2 & 4 & -8 \\ 0 & 1 & -3 & -1 & 6 \\ 3 & 4 & -6 & 8 & 0 \\ 0 & -1 & 3 & 4 & -12\end{array}\right]\right)=\left[\begin{array}{cccc|c}1 & 0 & 2 & 0 & 0 \\ 0 & 1 & -3 & 0 & 4 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(iii)

$$
\begin{aligned}
& x_{1}+2 x_{3}=0 \quad \Rightarrow x_{1}=-2 x_{3} \\
& x_{2}-3 x_{3}=4 \quad \Rightarrow x_{2}=4+3 x_{3} \\
& x_{4}=-2
\end{aligned}
$$

(iv) Let $t=x_{3}$.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
4+3 t \\
t \\
-2
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
4 \\
0 \\
-2
\end{array}\right]
$$

(5)

$$
\begin{aligned}
& c=\text { children } \\
& a= \\
& \quad \begin{array}{l}
12 c+3 \text { alts } \\
\\
\\
8 c+3 a=162 \\
\\
{\left[\begin{array}{l}
c \\
a
\end{array}\right]=\left[\begin{array}{l}
10 \\
14
\end{array}\right]}
\end{array}
\end{aligned}
$$

So, admission was $\$ 10$ for children and $\$ 14$. For adults.
(6) $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]=\left[\begin{array}{cccc}0 & 2 & 1 & -1 \\ 1 & 0 & -2 & 3 \\ 3 & 4 & 2 & -3 \\ -1 & 0 & 1 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$
(7)

$$
\begin{aligned}
& T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
3
\end{array}\right] \\
& I(\vec{x})=A \vec{x} \\
& A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 5 & 3
\end{array}\right] \text { Yes, it is linear. } \\
& A \vec{x}=\left[\begin{array}{rrr}
1 & 2 & -1 \\
1 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
3
\end{array}\right]
\end{aligned}
$$

(8)

$$
\begin{aligned}
& \vec{x}=\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right] \\
& \vec{u}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \\
& \operatorname{proj}_{L}(\vec{x})=(\vec{x} \cdot \vec{u}) \vec{u}=\left(-\frac{8}{3}+2+\frac{1}{3}\right)\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right]=\left(-\frac{1}{3}\right)\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
113
\end{array}\right]=\left[\begin{array}{c}
2 / 9 \\
-2 / 9 \\
-1 / 9
\end{array}\right]=\operatorname{proj}(\vec{x}) \\
& \operatorname{ref}_{L}(\vec{x})=2 \operatorname{proj}_{L}(\vec{x})-\vec{x}=2\left[\begin{array}{c}
2 / 9 \\
-2 / 9 \\
-1 / 9
\end{array}\right]-\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
419 \\
-4 / 9 \\
-2 / 9
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3219 \\
-3119 \\
-1119
\end{array}\right]=\operatorname{ref}(\vec{x})
\end{aligned}
$$

(a)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 2 & -2 \\
2 & 3 & -1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 2
\end{array}\right]} \\
& 3 \times 3 \\
& {\left[\begin{array}{ccc}
-1(3)+1(2)+2(1) & -1(1)+1(3)+2(1) & -1(1)+1(1)+2(2) \\
1(3)+2(2)-2(1) & 1(1)+2(3)-2(1) & 1(1)+2(1)-2(2) \\
2(3)+3(2)-1(1) & 2(1)+3(3)-1(1) & 2(1)+3(1)-1(2)
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
1 & 4 & 4 \\
5 & 5 & -1 \\
11 & 10 & 3
\end{array}\right]
\end{aligned}
$$

(10)

$$
\left.\begin{array}{l}
\operatorname{rref}\left(\left[\begin{array}{cccc}
1 & 2 & 4 & -1 \\
2 & 4 & 3 & 1 \\
3 & 6 & 0 & 3 \\
4 & 8 & 2 & 2
\end{array}\right]\right)=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{rank}=3
\end{array}\right]
$$

(11)

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
-2 \\
0
\end{array}\right]} \\
& B=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]} \\
& C=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
4
\end{array}\right]}
\end{aligned}
$$

90° counterclockwise rotation

orthogonal projection onto y-ax is

scaling by a factor of α
(12)

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right] \\
& A^{-1}=\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \underset{R_{3}+(-5) R_{1}}{\longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & -4 & -15 & -5 & 0 & 1
\end{array}\right] R_{1}+(-2) R_{2} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & -5 & 1 & -2 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & (1) & -5 & 4 & 1
\end{array}\right] \xrightarrow{R_{1}+5 R_{3}} R_{2}+(-4) R_{3}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -24 & 18 & 5 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]} \\
& A^{-1}=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right]
\end{aligned}
$$

(13)

$$
\begin{aligned}
& T\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad T\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right] \quad b=2-a \\
& T(\vec{x})=\Delta \vec{x} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]} \\
& \begin{array}{l}
{\left[\begin{array}{l}
a+b \\
c+d
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \Rightarrow r} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1
\end{array}\right]}
\end{array} \\
& {\left[\begin{array}{l}
2 a+3 b \\
2 c+3 d
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]} \\
& T=A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
10 & -7
\end{array}\right] \\
& \frac{\text { Verify: }}{[20]} \\
& {\left[\begin{array}{cc}
2 & 0 \\
10 & -7
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2 \times 1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \checkmark} \\
& {\left[\begin{array}{cc}
2 & 0 \\
10 & -7
\end{array}\right]\left[\begin{array}{l}
2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right] \sqrt{ }}
\end{aligned}
$$

$$
2 a+3(2-a)=4
$$

$$
2 a+6-3 a=4
$$

$$
\text { 介 } \quad \begin{aligned}
& -a=-2 \\
& a=2
\end{aligned} \Rightarrow b=2-a
$$

$$
\begin{aligned}
& 2-2 \\
& =2
\end{aligned}
$$

$$
2 a+3 b=4
$$

$$
b=0
$$

$$
2 c+3 d=-1
$$

$$
\Downarrow y
$$

$$
2 c+3(3-c)=-1
$$

$$
2 c+9-3 c=-1
$$

$$
-c=-10
$$

$$
c=10 \Rightarrow d \equiv 3-c
$$

$$
=3-10
$$

$$
d=-7
$$

Exam 2 MTH 331 Fall 2021 Total Pts:100 10/25/2021

Name:
Total Received:
Show all work for full credit. Write all your solutions in the papers provided.

1. Find (i) a basis of the kernel and (ii) a basis of the image of the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ given by

$$
T(\vec{x})=\left[\begin{array}{ccccc}
1 & 2 & 3 & 2 & -1 \tag{10Pts}\\
3 & 1 & 9 & 6 & -8 \\
1 & -2 & 3 & 1 & -3 \\
2 & 1 & 6 & 1 & 1
\end{array}\right] \vec{x}
$$

What are the dimensions of $\operatorname{ker}(T)$ and $\operatorname{im}(T)$?
2. Which of the vectors

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
2 \\
3 \\
6
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad \overrightarrow{v_{3}}=\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right], \quad \overrightarrow{v_{4}}=\left[\begin{array}{c}
1 \\
-7 \\
-12
\end{array}\right]
$$

in \mathbb{R}^{3} are linearly independent? Find a nontrivial relation among them? (6 Pts)
3. Prove that the set

$$
W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x-y+2 z=0, \text { and } x, y, z \in \mathbb{R}\right\}
$$

is a subspace of \mathbb{R}^{3}. Find any two bases of the subspace W of \mathbb{R}^{3}.
State the dimension of W. (10 Pts)
4. Find the redundant column vector(s) of the matrix A where

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 1 & 2 & -1 \\
1 & 2 & 3 & 2 & 3 \\
-1 & -2 & -3 & 2 & 1
\end{array}\right]
$$

Write all possible relationships among the column vectors. (7 Pts)
5. Determine whether the vector \vec{x} is in the span V of the vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ where

$$
\vec{x}=\left[\begin{array}{l}
2 \\
9 \\
4
\end{array}\right], \quad \overrightarrow{v_{1}}=\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], \quad \overrightarrow{v_{3}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

If \vec{x} is in V, write the coordinate vector $[\vec{x}]_{\mathfrak{B}} . \quad$ (6 Pts)
6. Is matrix $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ similar to matrix $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$? Show complete work and if they are similar, exhibit the matrix S in the definition $(A S=S B) .(7 \mathrm{Pts})$
7. Find a basis for the space of all 2×2 matrices A such that $A B=B A$ where $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and determine its dimension. (6 Pts)
8. Use "column by column" to construct the matrix B of the linear transformation $T(\vec{x})=A \vec{x}$ with respect to the basis $\mathcal{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$, where

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
2 \tag{10Pts}\\
2 \\
1
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \overrightarrow{v_{3}}=\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right], \quad \text { and } A=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right]
$$

9. Prove that the subset $W=\left\{p(x) \in P_{2}: p^{\prime}(1)=p(2)\right\}$ is a subspace of the space P_{2} of all polynomials of degree 2 or less. Find TWO bases of W. What is the dimension of W ? (8 Pts)
10. Consider the linear transformation $T(M)=\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right] M$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$ with standard basis of $\mathbb{R}^{2 \times 2}$.
(a) Find the \mathfrak{B}-matrix B of the transformation T by using either diagram or column by column.
(b) Find bases of kernel and image of the matrix B.
(c) Find bases of kernel and image of the transformation T (using part (b)).
(d) Determine whether T is isomorphism. (10 Pts)
11. (a) Prove that the transformation $T: P_{2} \rightarrow P_{2}$ given by $T(f)=2 f-f^{\prime}$ is linear.
(b) With the standard basis $\mathcal{B}=\left(1, x, x^{2}\right)$ of P_{2}, find the \mathcal{B}-matrix of the transformation T, by using either the diagram method or the method of the columns of the \mathcal{B}-matrix of T.
(c) Determine whether T is isomorphism by analyzing the \mathcal{B}-matrix . (10 Pts)
12. State with a brief reason whether the following statements are true or false. (10 Pts)
(a) The kernel of a 4×3 matrix is a subset of \mathbb{R}^{4}.
(b) If $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ in \mathbb{R}^{n} are LD , then there is at least one non-trivial relation among them.
(c) The space P_{2} is isomorphic to \mathbb{R}^{3}.
(d) The column vectors of a 4×5 matrix may be linearly independent.
(e) If V and W are subspaces of \mathbb{R}^{n}, then $V \cap W$ is be a subspace of \mathbb{R}^{n} as well.
(f) The image of a 4×5 matrix A is a subspace of \mathbb{R}^{4}.
(g) If A is a 6×5 matrix of rank 2 , then the nullity of A is 3 .
(h) The space $\mathbb{R}^{3 \times 2}$ is 6 -dimensional.
(i) The function $T(f)=3 f f^{\prime}$ from C^{∞} to C^{∞} is a linear transformation.
(j) The space of all 2×2 lower-triangular matrices is 3 -dimensional.
(1)

$$
\begin{aligned}
& T(\vec{x})=\left[\begin{array}{ccccc}
1 & 2 & 3 & 2 & -1 \\
3 & 1 & 9 & 6 & -8 \\
1 & -2 & 3 & 1 & -8 \\
2 & 1 & 0 & 1 & 1
\end{array}\right] \vec{x} \quad \operatorname{rref}\left(\left[\begin{array}{ccccc}
1 & 2 & 3 & 2 & -1 \\
3 & 1 & 9 & 6 & -8 \\
1 & -2 & 3 & 1 & -3 \\
2 & 1 & 6 & 1 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
\overrightarrow{v_{3}}=3 \overrightarrow{v_{1}} \Rightarrow-3 \overrightarrow{v_{1}}+\overrightarrow{v_{5}}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}-2 \overrightarrow{v_{4}} \\
\Rightarrow-\overrightarrow{v_{1}}-\overrightarrow{v_{2}}+2 \overrightarrow{v_{4}}+\overrightarrow{v_{s}}=\overrightarrow{0}
\end{array}
\end{aligned}
$$

basis of image $=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 6 \\ 1 \\ 1\end{array}\right]\right)$
$\operatorname{dim}(\operatorname{im}(T))=3$
basis of kernel $\left.=\left(\begin{array}{r}-3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 0 \\ 2 \\ 1\end{array}\right]\right)$
(2)

$$
\begin{aligned}
& \vec{v}_{1}=\left[\begin{array}{l}
2 \\
3 \\
6
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right] \overrightarrow{v_{4}}\left[\begin{array}{c}
1 \\
-7 \\
-12
\end{array}\right] \\
& A=\left[\begin{array}{cccc}
2 & 1 & 4 & 1 \\
3 & 2 & -3 & -7 \\
6 & -1 & 1 & -12 \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \overrightarrow{v_{4}}
\end{array}\right] \quad \operatorname{rref}(A)=\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are linearly independent
Nontrivial relationship:

$$
\overrightarrow{v_{4}}=-2 \overrightarrow{v_{1}}+\overrightarrow{v_{2}}+\overrightarrow{v_{3}}
$$

$$
w=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; x-y+2 z=0 \text { and } x, y, z \in \mathbb{R}\right\}
$$

(i) zero Element:
$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] E W$ because $0-0+2(0)=0$.
(ii) $\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]+\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2} \\ z_{1}+z_{2}\end{array}\right] \in$
$\begin{aligned} \mathrm{W} & \text { because } \\ & \left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right)+2\left(z_{1}+z_{2}\right)=0\end{aligned}$

$$
\begin{aligned}
& \Rightarrow\left(x_{1}+y_{1}+2 z_{1}\right)+\left(x_{2}-y_{2}+2 z_{2}\right)=0 \\
& \Rightarrow 0+0=0
\end{aligned}
$$

(iii) $k\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in W$ because $k x-k y+2 k z=0$

$$
\Rightarrow k(x-y+2 z)=0
$$

$$
\Rightarrow K(0)=0
$$

$$
\operatorname{dim}(w)=2
$$

(4)

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 1 & 2 & -1 \\
1 & 2 & 3 & 2 & 3 \\
-1 & -2 & -3 & 2 & 1
\end{array}\right] \quad \operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \overrightarrow{v_{4}} & \overrightarrow{v_{5}}
\end{array}\right]
$$

\vec{v}_{3} and \vec{v}_{5} are redundant vectors.
Relationships among column vectors:

$$
\begin{aligned}
& \overrightarrow{v_{3}}=\vec{v}_{1}+\vec{v}_{2} \\
& \overrightarrow{v_{5}}=-\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{4}
\end{aligned}
$$

(5)

$$
\vec{x}=\left[\begin{array}{l}
2 \\
9 \\
4
\end{array}\right], \overrightarrow{v_{1}}=\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

$\operatorname{rref}\left(\left[\begin{array}{ccc|c}-1 & 2 & 2 & 2 \\ 2 & 1 & 2 & 9 \\ -2 & -1 & 2 & 4\end{array}\right]\right)=\left[\begin{array}{lll|c}1 & 0 & 0 & 19 / 10 \\ 0 & 1 & 0 & -13 / 10 \\ 0 & 0 & 1 & 1314\end{array}\right] \Rightarrow \begin{aligned} & \vec{x} \text { is in the span of } \\ & \overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}} \text {. }\end{aligned}$

$$
[\vec{x}]_{8}=\left[\begin{array}{c}
19 / 10 \\
13110 \\
1314
\end{array}\right]
$$

$$
\begin{aligned}
& B_{1}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right\} \\
& B_{2}=\left\{\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
4 \\
2 \\
-1
\end{array}\right]\right\} \begin{array}{ll}
x-1+2=0 & x-2-2=0 \\
x+1=0 & x-4=0
\end{array}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& A \sim B ? \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
a & b \\
-c & -d
\end{array}\right]=\left[\begin{array}{ll}
b & a \\
d & c
\end{array}\right]}
\end{aligned}
$$

$$
a=b \quad b=a
$$

$$
-c=d, \quad-d=c
$$

$$
S=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]
$$

$$
A \sim B \text { and } S=\left[\begin{array}{cc}
a & a \\
c & -c
\end{array}\right]
$$

verify

$$
\begin{aligned}
& a=1, c=2 \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right] }=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right] }=\left[\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right]
\end{aligned}
$$

(7)

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]} \\
{\left[\begin{array}{ll}
a & 2 b \\
c & 2 d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
2 c & 2 d
\end{array}\right]} \\
a=a
\end{array} \begin{array}{c}
2 b=b \\
b=0
\end{array} \quad A=\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text { Basis of } W=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text {, } \begin{aligned}
& 2 d=2 d \\
& c=2 c \\
& c=0
\end{aligned}
$$

(8)

$$
\begin{aligned}
& \overrightarrow{v_{1}}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \overrightarrow{v_{3}}=\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right], \text { and } A=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right] \\
& T\left(\overrightarrow{v_{1}}\right)=A \overrightarrow{v_{1}}=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right]\left[\begin{array}{c}
2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[T\left(\overrightarrow{v_{1}}\right)\right] \mathscr{B}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{2}}\right)=A \vec{v}_{2}=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
9 \\
-9 \\
0
\end{array}\right]=9 \overrightarrow{v_{2}} \Rightarrow\left[T\left(\overrightarrow{v_{2}}\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}
0 \\
9 \\
0
\end{array}\right] \\
& T\left(\overrightarrow{v_{3}}\right)=A \overrightarrow{v_{3}}=\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
0 & -2 & 8
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
-2
\end{array}\right]=9 \overrightarrow{v_{3}} \Rightarrow\left[T\left(\overrightarrow{v_{3}}\right)\right] \mathscr{B}=\left[\begin{array}{l}
0 \\
0 \\
9
\end{array}\right] \\
& B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]
\end{aligned}
$$

(9)

$$
\begin{array}{ll}
W=\left\{p(x) \in p_{2}:\right. & \left.p^{\prime}(1)=p(2)\right\} \\
p(x)=a+b x+c x^{2} & p^{\prime}(1)=p(2) \\
p^{\prime}(x)=b+2 c x & b+2 c=a+2 b+4 c \\
& -a-b-2 c=0 \Rightarrow a+b+2 c=0
\end{array}
$$

(i) zero Element:
$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in W$ because $-0-0-2(0)=0$.
(ii) $\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right]+\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}a_{1}+a_{2} \\ b_{1}+b_{2} \\ c_{1}+c_{2}\end{array}\right]$ because
(iii) $k\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in W$ because $-k a-k b-2 k c=0$

$$
\begin{aligned}
& \quad-\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right)-2\left(c_{1}+c_{2}\right)=0 \\
& \Rightarrow \\
& \Rightarrow\left(-a_{1}-b_{1}-2 c_{1}\right)+\left(-a_{2}-b_{2}-2 c_{2}\right)=0 \\
& 0+0=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow k(-a-b-2 c)=0 \\
& \Rightarrow k(0)=0
\end{aligned}
$$

Standard Basis of $P_{2}=\left\{1, x, x^{2}\right\}$

$$
\begin{array}{ll}
B_{1}=\left\{-1+x, 2-x^{2}\right\} \\
B_{2}=\left\{-8 x+2 x^{2}, 3-3 x\right\}
\end{array} \quad \operatorname{dim}(w)=2
$$

(10) $\Gamma(M)=\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right] M$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$
(a)

$$
\begin{aligned}
& T\left(\left[\begin{array}{ll}
10 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right] \Rightarrow\left[T\left(\left[\begin{array}{ll}
10
\end{array}\right]\right)\right] B=\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right] \Rightarrow\left[T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right]_{D}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right] \Rightarrow B=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
2 & 0 & -2 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{array}\right]\right. \\
& T\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
-2 & 0 \\
-4 & 0
\end{array}\right] \Rightarrow\left[T\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)\right]_{B}=\left[\begin{array}{cc}
-2 \\
-4 \\
0
\end{array}\right] \operatorname{ref}(B)=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b)

$$
\operatorname{im}(B)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right]\right) \quad \begin{aligned}
& \overrightarrow{v_{3}}=-2 \overrightarrow{v_{1}} \Rightarrow 2 \overrightarrow{v_{1}}+\overrightarrow{v_{3}}=\overrightarrow{0} \\
& \vec{v}_{4}=-2 \overrightarrow{v_{2}} \Rightarrow 2 \overrightarrow{v_{2}}+\overrightarrow{v_{4}}=\overrightarrow{0}
\end{aligned}
$$

$$
\operatorname{ker}(B)=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

(c) $\operatorname{im}(T)=\operatorname{span}\left(\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]\right) \operatorname{ker}(T)=\operatorname{span}\left(\left[\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right]\right)$

T is isomorphism if $\operatorname{dim}(\operatorname{Kes}(T))=0$.
(iii(a) $T: P_{2} \rightarrow P_{2}$ given by $T(f)=2 f-f^{\prime}$

$$
\text { (i) } \begin{aligned}
T(f+g) & =2(f+g)-(f+g)^{\prime}=2 f+2 g-f^{\prime}-g^{\prime}=\left(2 f-f^{\prime}\right)+\left(2 g-g^{\prime}\right) \\
& =T(f)+T(g)
\end{aligned}
$$

(ii) $T(k f)=2 k f-k f^{\prime}=k\left(2 f-f^{\prime}\right)=k T(f)$
(b)

$$
\begin{aligned}
& T(1)=2(1)-(1)^{\prime}=2-0=2 \Rightarrow[T(1)]_{\infty}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& T(x)=2 x-(x)^{\prime}=2 x-1 \Rightarrow[T(x)]_{\mathscr{B}}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& T\left(x^{2}\right)=2 x^{2}-\left(x^{2}\right)^{\prime}=2 x^{2}-2 x \Rightarrow\left[T\left(x^{2}\right)\right]_{\mathscr{B}}=\left[\begin{array}{cc}
0 \\
-22 \\
2
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 2 & -2 \\
0 & 0 & 2
\end{array}\right] \quad \operatorname{rref}(B)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(c) T is isomorphism because $\operatorname{rref}(B)=I_{3}$ and

$$
\begin{aligned}
& \operatorname{im}(B)=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right]\right) \\
& \operatorname{ker}(B)=\{\overrightarrow{0}\}
\end{aligned}
$$

(12)
(a) F; image is associated with \mathbb{R}^{4}, while kernel is associated with \mathbb{R}^{3}
(b) T; when vectors are $L D$, they can be written in terms of another vector. This occurs with a non-zero vector.

$$
\text { Ex. }\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow \vec{v}_{2}=2 \overrightarrow{v_{1}}
$$

(C) T; standard basis of $P_{2}=\left\{1, x, x^{2}\right\} \Rightarrow \operatorname{dim}\left(P_{2}\right)=3$
(d) F; only 4 out of the 5 vectors could be linearly independent.
(C) T
(f) T; The image would be in \mathbb{R}^{4},
(9) $T ; 2+3=5$
(h) $T ; 2 \times 3=6$
(i) F; (i) $T(f+g)=3(f+g)(f+g)^{\prime}=3 f^{2}+f g^{\prime}+1 g^{\prime}+\left(g^{2}\right)^{2}$

$$
\text { (ii) } T(k f)=3(k f)(k f)=k\left(3 f f^{\prime}\right)=k T(f)
$$

(1) $T:\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right] \Rightarrow \operatorname{dim}=3$

Exam 3 MTH 331 Fall 2018 Total Pts:100 11/15/2018

Name: \qquad Total Received:
Show all work for full credit. Do not use calculator to find determinants. Extra 5 points included.

1. Find the angle between the vectors $\overrightarrow{v_{1}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. (4 Pts)
2. For the subspace $W=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]\right)$ of \mathbb{R}^{4}, find a basis for W^{\perp} and then find an orthonormal basis for W^{\perp}. (8 Pts)
3. Perform the Gram-Schmidt process to find the $Q R$ factorization of the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \tag{10Pts}\\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right]
$$

4. Consider the subspace W of \mathbb{R}^{4} spanned by the vectors $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}3 \\ 1 \\ 1 \\ 3\end{array}\right]$. Find the matrix M of the orthogonal projection onto W. (4 Pts)
5. Consider the subspace $V=\operatorname{im}(A)$ of \mathbb{R}^{4}, where $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 1 \\ 1 & 1 \\ 1 & 3\end{array}\right]$.

Find orthogonal projection, $\operatorname{proj}_{V}(\vec{x})$, for $\vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 6\end{array}\right] .(6 \mathrm{Pts})$
6. Use Sarrus's rule to find the determinant of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -2 & 3 & 4 \\ 2 & 1 & 5\end{array}\right] \cdot$ (5 Pts)
7. Using Gaussian elimination, turn into upper triangular to find the determinant of A for

$$
A=\left[\begin{array}{ccc}
1 & 5 & -4 \\
-1 & -4 & 5 \\
-2 & -8 & 7
\end{array}\right] . \quad(5 \mathrm{Pts})
$$

8. Use Gaussian elimination to find the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
1 & -4 & 3 & 4 \tag{7Pts}\\
3 & -9 & 5 & 10 \\
-3 & 0 & 1 & -2 \\
1 & -4 & 0 & 6
\end{array}\right]
$$

9. Find the eigenvalues of the matrices $A=\left[\begin{array}{cc}3 & 2 \\ 3 & -2\end{array}\right]$ and $B=\left[\begin{array}{ccc}4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right]$.
10. Find the determinant of the transformation $T(f(t))=2 f-f^{\prime}$ from P_{2} to P_{2}.

Is the linear transformation T invertible? (6 Pts)
11. Use Cramer's rule to solve the system (you can use calculator for the determinants)

$$
\begin{align*}
x+2 y+z & =5 \\
2 x+2 y+z & =6 \\
x+2 y+3 z & =9 \tag{6Pts}
\end{align*}
$$

12. Find the area of the 2-parallelepiped defined by the vectors $\overrightarrow{v_{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
13. Find the classical adjoint and determinant of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2\end{array}\right]$. Use them to find the inverse $A^{-1}\left(=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}\right)$ of the matrix A. (8 Pts)
14. Consider a 4×4 matrix A with rows $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$. If $\operatorname{det}(A)=4$, find the determinants of
(a) $\operatorname{det}\left[\begin{array}{c}\overrightarrow{v_{1}} \\ 2 \overrightarrow{v_{2}} \\ 3 \overrightarrow{v_{3}} \\ \overrightarrow{v_{4}}\end{array}\right]$
(b) $\operatorname{det}\left[\begin{array}{c}2 \overrightarrow{v_{2}} \\ \overrightarrow{v_{1}} \\ \overrightarrow{v_{3}} \\ \overrightarrow{v_{4}}\end{array}\right]$
(c) $\operatorname{det}\left[\begin{array}{c}\overrightarrow{v_{1}} \\ \overrightarrow{v_{1}}+2 \overrightarrow{v_{2}} \\ \overrightarrow{v_{2}}+3 \overrightarrow{v_{3}} \\ \overrightarrow{v_{1}}+\overrightarrow{v_{2}}+\overrightarrow{v_{4}}\end{array}\right]$.
15. State whether the following statements are true or false. (15 Pts)
(a) If $\operatorname{det}(A)=10$, then 0 cannot be an eigenvalue of the matrix A.
(b) If A is an $n \times n$ matrix such that $A A^{T}=I_{n}$, then A must be an orthogonal matrix.
(c) If A and B are symmetric $n \times n$ matrices, then $A B$ must be symmetric as well.
(d) The equation $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ holds for all $n \times n$ matrices.
(e) If A and B are orthogonal 2×2 matrices, then $A B=B A$.
(f) $\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}$ must hold for any orthogonal vectors \vec{x} and \vec{y} in \mathbb{R}^{n}.
(g) If all entries of a 7×7 matrices are 7 , then $\operatorname{det}(A)=7^{7}$.
(h) If $A=[\vec{u} \vec{v} \vec{w}]$ is any 3×3 matrix, then $\operatorname{det}(A)=\vec{u} \cdot(\vec{v} \times \vec{w})$.
(i) The determinant of any $n \times n$ matrix is the product of its diagonal entries.
(j) There exists a real 5×5 matrix without any real eigenvalues.
(k) The equation $\operatorname{det}(4 A)=4 \operatorname{det}(A)$ holds for all 4×4 matrices A.
(l) The equation $\operatorname{det}(-A)=\operatorname{det}(A)$ holds for all 4×4 matrices.
(m) The eigenvalues of any triangular matrix are its diagonal entries.
(n) If \vec{v} is an eigenvector of A, then \vec{v} must be an eigenvector of A^{3} as well.
(o) The $\operatorname{det}(A)$ is the product of its eigenvalues, counted with their algebraic multiplicities.
(1.)

$$
\begin{aligned}
& \vec{V}_{1} \cdot \vec{V}_{2}=\left\|\vec{V}_{1}\right\| \backslash \vec{V}_{2} \backslash \cos \theta \quad \vec{V}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \vec{V}_{2}=\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right] \\
& {\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right]=\left(\sqrt{11^{2}+(-1)^{2}+1^{2}}\right)\left(\sqrt{11^{2}+2^{2}+1^{2}}\right) \cos \theta} \\
& 0=(\sqrt{3})(\sqrt{6}) \cos \theta \\
& \cos \theta=0 \\
& \theta=\pi / 2
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { (2) } W=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]\right) \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=x_{1}+x_{2}+x_{3}+x_{4}=0 \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]=x_{1}-x_{2}-x_{3}+x_{4}=0} \\
& \binom{x_{1}+x_{2}+x_{3}+x_{4}=0}{x_{1}-x_{2}-x_{3}+x_{4}=0} \operatorname{rref}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & v_{2} & v_{3} v_{4} \\
1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \quad \vec{v}_{1}=\vec{v}_{4} \Rightarrow \vec{v}_{1}-\vec{v}_{4}=0 \\
& \vec{v}_{2}=\vec{v}_{3} \Rightarrow \vec{v}_{2}-\vec{v}_{3}=0
\end{aligned}
$$

A basis for $W^{\perp}=\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right]\right\}$

$$
\begin{aligned}
\vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \quad \vec{u}_{2}: \vec{v}_{2}{ }^{2} & =\vec{v}_{2}-\left(\vec{u}_{1} \cdot \tilde{v}_{2}\right) \vec{u}_{1} \\
& =\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]-\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
- \\
-1 \\
0
\end{array}\right]\right) \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \\
\text { basis of } w^{+}=\left\{\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
0 \\
-1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right]\right\} & =\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]-\left(\frac{1}{\sqrt{2}}(0)\right)^{0} \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] \quad \vec{u}_{2}=\frac{v_{2}}{\| \vec{v}_{2}^{2}} 1 \|=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

(4). $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \vec{V}_{2}=\left[\begin{array}{l}3 \\ 1 \\ 1 \\ 3\end{array}\right]$
$\vec{u}_{0}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \vec{u}_{2}=\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$
$M=Q Q^{\top}$

$$
Q=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] \quad Q^{T}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2 \\
1 / 2
\end{array}\right]
$$

(wak shown above) $M=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 \\ 1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{cccc}1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2 & -1 / 2 & 1 / 2\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { (3.) } \\
& A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right] \quad A=Q R=\left[\begin{array}{ccc}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right] \\
& \vec{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \\
& \begin{array}{l}
\vec{u}_{2}: \vec{v}_{2}^{2}=\vec{v}_{2}-\left(\vec{u}_{1} \cdot \vec{v}_{2}\right) \vec{u}_{1}=\left[\begin{array}{l}
3 \\
1 \\
1 \\
3
\end{array}\right]-\underbrace{\left(\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
1 \\
1 \\
3
\end{array}\right]\right)}_{=4=r_{12}} \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \\
\vec{u}_{2}=\vec{v}_{2}^{+} \\
{\left[\begin{array}{c}
3 \\
1 \\
1 \\
3
\end{array}\right]-2\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]}
\end{array} \\
& \vec{u}_{2}=\frac{\vec{v}_{2}^{+}}{\left\|\overrightarrow{w_{2}^{+}}+\right\|}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
r_{22}
\end{array}\right] \\
& \begin{array}{c}
8 \\
1 / 2(3+1+1+3)
\end{array} \\
& \begin{array}{l}
\frac{1}{2}(10)=5=r_{13} \\
\left.\vec{u}_{3}: \vec{v}_{3}^{1}=\vec{v}_{3}-\left(\vec{u}_{1} \cdot \vec{v}_{3}\right) \vec{u}_{1}-\left(\overrightarrow{u_{2}} \cdot \vec{v}_{3}\right)=\overrightarrow{u_{2}}=\left[\begin{array}{l}
5 \\
0 \\
2 \\
3
\end{array}\right]-\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
0 \\
2 \\
3
\end{array}\right]\right) \frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]-\left(\begin{array}{c}
1 \\
\frac{1}{2} \\
-1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
0 \\
2 \\
3
\end{array}\right]\left[\begin{array}{c}
1 \\
2
\end{array}\right]\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
\end{array} \\
& \vec{U}_{3}=\frac{\vec{v}_{3}{ }^{+}}{\left\|\vec{v}_{3}{ }^{1}\right\|}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
r_{33} \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
5 \\
0 \\
2
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

(5)

$$
V=i m(A)
$$

$A=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right] \begin{aligned} & \text { Since the vectors of } A \text { are } L I \text {, the } \\ & \text { im }(A)=A .\end{aligned}$

$$
\tilde{u}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \bar{u}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

(6) $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -2 & 3 & 4 \\ 2 & 1 & 5\end{array}\right]$

$$
\begin{array}{llllll}
x & 2 & -x & x & \\
-2 & 3 & 4 & -2 & 3 & 15+16+2+6-4+2 \\
2 & 1 & 5 & 2 & 1 & \operatorname{det}(A)=55
\end{array}
$$

$$
\operatorname{det}(A)=-3
$$

$$
\left|\begin{array}{ccc}
1 & 5 & -4 \\
-1 & -4 & 5 \\
-2 & -8 & 7
\end{array}\right|+2 R_{1}\left|\begin{array}{ccc}
1 & 5 & -4 \\
0 & 1 & 1 \\
0 & 2 & -1
\end{array}\right| \rightarrow\left|\begin{array}{ccc}
1 & 5 & -4 \\
0 & 1 & 1 \\
0 & 0 & -3
\end{array}\right|
$$

(8)

$$
\text { (1)(1) }\left(\left.\begin{array}{ll}
36 & -50 \\
63 & -88
\end{array} \right\rvert\,=(-3168+3150)=-18=\operatorname{det}(A)\right.
$$

$$
\begin{aligned}
& \operatorname{proj}(\vec{x})=\left(\vec{u}_{0} \cdot \dot{x}_{1}\right) \vec{u}_{1}+\left(\vec{u}_{2} \cdot \vec{x}_{1}\right) \vec{u}_{2} \\
& =\left(\left[\begin{array}{l}
1 \\
2 \\
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right]\right) \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left(\begin{array}{l}
1 \\
2
\end{array}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
3 \\
6
\end{array}\right]\right)\left[\begin{array}{c}
1 \\
2 \\
\frac{1}{2} \\
-1 \\
-1 \\
1
\end{array}\right] \\
& =\left(\frac{1}{2}(12)\right) \frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left(\frac{1}{2}(2)\right) \frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right] \\
& =3\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 / 2 \\
5 / 2 \\
512 \\
7 / 2
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}
\end{array}\left[\begin{array}{c}
7 \\
5 \\
5
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (9) } A=\left[\begin{array}{cc}
3 & 2 \\
3 & -2
\end{array}\right] \\
& \operatorname{det}\left(A-\lambda 1_{2}\right)=0 \\
& \left|\begin{array}{cc}
3-\lambda & 2 \\
3 & -2-\lambda
\end{array}\right|=(3-\lambda)(-2-\lambda)-\theta=0 \\
& -6-3 \lambda+2 \lambda+\lambda^{2}-6=0 \\
& \lambda^{2}-\lambda-12=0 \\
& (\lambda-4)(\lambda+3)=0 \\
& \text { For } A, \lambda_{1}=4 \quad \lambda_{2}=-3 \\
& B=\left[\begin{array}{ccc}
4 & -5 & 1 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right] \quad \operatorname{det}(B-\lambda(3)=0 \\
& \left|\begin{array}{ccc}
4-\lambda & -5 & 1 \\
1 & -\lambda & -1 \\
0 & 1 & -1-\lambda
\end{array}\right| \\
& (4-\lambda)\left(\left.\begin{array}{cc}
-\lambda & -1 \\
1 & -1-\lambda
\end{array}|-1| \begin{array}{cc}
-5 & 1 \\
1 & -1-\lambda
\end{array} \right\rvert\,+0\right. \\
& (4-\lambda)(-\lambda(-1-\lambda)+1)-(-5(-1-\lambda)-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& B=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 2 & -2 \\
0 & 0 & 2
\end{array}\right] \\
& (4-\lambda)\left(\lambda+\lambda^{2}+1\right)-(5+5 \lambda-1)=0 \\
& 4 \lambda+4 \lambda^{2}+4-\lambda^{2}-\lambda^{3}-\lambda-5-5 \lambda+1=0 \\
& -2 \lambda+3 \lambda^{2}-\lambda^{3}=0 \\
& -\lambda^{3}+3 \lambda^{2}-2 \lambda=0 \\
& \lambda^{3}-3 \lambda^{2}+2 \lambda=0 \\
& \lambda\left(\lambda^{2}-3 \lambda+2\right)=0 \\
& \lambda(\lambda-2)(\lambda-1)=0 \\
& \text { For } B, \lambda=0, \lambda=2, \lambda=1 \\
& \operatorname{det}(B)=2(2)(2)=8 \Rightarrow T \text { is invertible. }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (12) Area }=\sqrt{\operatorname{det}\left(A^{\top} A\right)}=\sqrt{6} \\
& A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right] \quad A^{\top}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right] \quad A^{\top} A:\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right] \\
& \operatorname{det}\left(A^{\top} A\right)=(42-36)=6
\end{aligned}
$$

(13) $\operatorname{adj}(A)=\left[\begin{array}{ccc}+\left|A_{11}\right| & -\left|A_{12}\right| & \left|A_{13}\right| \\ -\left|A_{21}\right| & \left|A_{22}\right| & -A_{23} \mid \\ \left|A_{31}\right| & -\left|A_{32}\right| & \left|A_{33}\right|\end{array}\right]^{\top}=\left[\begin{array}{ccc}-2 & 3 & 5 \\ 14 & -7 & -7 \\ 4 & 1 & -3\end{array}\right]^{\top}=\left[\begin{array}{ccc}-2 & 14 & 4 \\ 3 & -7 & 1 \\ 5 & -7 & -3\end{array}\right]$

$$
\begin{aligned}
& \left.A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
1-1 & 1 \\
1 & 4 & -2
\end{array}\right] \quad \operatorname{det}(A): \begin{array}{ccccc}
2 & 1 & 3 & 2 & 1 \\
1 & -1 & 1 & -1 \\
1 & 4 & -2 & 1 & 4+1+12+3-8+2 \\
- & -+ & +t
\end{array}\right] \\
& A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A=\left[\begin{array}{l}
14 \\
14
\end{array}\left[\begin{array}{ccc}
-2 & 14 & 4 \\
3 & -7 & 1 \\
5 & -7 & -3
\end{array}\right]\right.
\end{aligned}
$$

(14) $\left.\begin{array}{l}\left.a_{1}\right) \\ \left.\operatorname{det}\left(\left[\begin{array}{c}v_{1} \\ 2 \frac{v_{2}}{2} \\ 3 v_{3} \\ v_{4}\end{array}\right]\right)=24\right]\end{array}\right]$
pull 2 and 3 out

$$
6 \cdot 4=24
$$

b.) $\operatorname{det}\left[\begin{array}{c}2 \vec{v}_{2} \\ \vec{v}_{1} \\ \vec{v}_{3} \\ v_{4}\end{array}\right]=-8$
swap 2 rows (-)
pull out $2 \rightarrow 4 \cdot 2: 8$
c.) $\operatorname{det}\left[\begin{array}{c}\vec{v}_{1} \\ \vec{v}_{1}+2 \vec{v}_{2} \\ \vec{v}_{2}+3 \vec{v}_{3} \\ \vec{v}_{3}+\vec{v}_{2}+\vec{v}_{4}\end{array}\right]=24$
adding rows doesn't change dee. phil out 2 from $2 \vec{N}_{2}$ and 3 from $3 \pi_{3}$ to get 24-(6.4)
(15) ai) true
c) $A \cdot A^{\top} \quad B=B^{-}$
b.) true
$(A B)^{\top}=B^{\top} A^{\top}=B A$
c) False
d) true
e) false
f) true
g) false set $=0$
h) true
i) False
j) false
k) false

1) true $(-1)^{4}=1$
m) true
i) true
2) true

Final Exam \quad MTH 331 Fall 2018 Total Pts:100 $12 / 6 / 18$

Name: \qquad Received:
Show all work for full credit. Write all your solutions on the given blank papers
Points distribution:

Problem No.	1	2	3	4	5	6	7	8	9	10	Total
Total Points	8	10	8	10	8	8	10	8	10	20	100

1. (No Calculator) Use Gauss-Jordan elimination to solve the following system $2 x+y-z=3, \quad x+y+z=4, \quad x+3 y+3 z=10$.
2. Find the redundant column vectors of the matrix A, and then find a basis of the image of A and a basis of the kernel of A, where

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right]
$$

3. Let P_{2} be the linear space of all polynomials of degree two or less. Prove that the transformation $T: P_{2} \rightarrow P_{2}$ defined by $T(f(x))=f(x)-2 f^{\prime \prime}(x)$ is linear. Find the \mathcal{B}-matrix B of the transformation T and use it to find kernel of T. Show that T is isomorphism.
4. (No Calculator) Find the $Q R$-factorizations of the matrix

$$
A=\left[\begin{array}{ccc}
2 & -2 & 18 \\
2 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]
$$

5. Let V be the plane in \mathbb{R}^{3} that is spanned by the vectors $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]$. Find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto the plane V.
6. (No Calculator) Use the Gaussian elimination and Laplace expansion to find the determinant of the following matrix.

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & 1 & 2 & -1 \\
0 & 7 & 5 & 3 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

7. (No Calculator) For the matrix A, find all (real) eigenvalues, then find a basis of each eigenspace, and find an eigenbasis, if it exists, where the matrix A is

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Is the matrix A diagonalizable? If so, find the matrices S and D which diagonalize the matrix A.
8. Find all the eigenvalues of the linear transformation $T(f(x))=f(2 x-3)$
from P_{2} to P_{2}. Is T diagonolizable ? If it is, then find the diagonal matrix D.
9. Find an orthonormal eigenbasis of the symmetric matrix $A=\left[\begin{array}{ccc}0 & 2 & 2 \\ 2 & 1 & 0 \\ 2 & 0 & -1\end{array}\right]$.
10. State True or False. Give short reasons if possible.
(a) A system of four linear equations in four unknowns can be inconsistent.
(b) If \vec{u}, \vec{v}, and \vec{w} are vectors in \mathbb{R}^{3} and rank of the matrix $A=[\vec{u} \vec{v} \vec{w}]$ is 2 , then \vec{w} must be a linear combination of \vec{u} and \vec{v}.
(c) If W_{1} and W_{2} are subspaces of a linear space V, then the intersection $W_{1} \cap W_{2}$ must be a subspace of V as well.
(d) The formula $A B=B A$ holds for all $n \times n$ invertible matrices A and B.
(e) The function $T(f)=3 f-4 f^{\prime}$ from C^{∞} to C^{∞} is a linear transformation.
(f) The polynomials of degree less than 3 form a 3-dimensional subspace of the linear space of all polynomials.
(g) If T is an isomorphism, then T^{-1} must be an isomorphism as well.
(h) All linear transformations from P_{3} to $\mathbb{R}^{3 \times 3}$ are isomorphism.
(i) The equation $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ holds for all invertible matrices.
(j) The property $A(B+C)=A B+A C$ holds if the products make sense.
(k) If the determinant of a square matrix is 1 or -1 , then A must be an orthogonal matrix.
(l) If an $n \times n$ matrix A is diagonalizable, then there must be a basis of \mathbb{R}^{n} consisting of eigenvectors of A.
(m) All diagonalizable matrices are invertible.
(n) The equation $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$ holds for all 3×3 matrices A and B.
(o) If two 3×3 matrices A and B both have the eigenvalues 1,2 and 3 , then A must be similar to B.
(p) There exists a subspace V of \mathbb{R}^{7} such that $\operatorname{dim}(V)=\operatorname{dim}\left(V^{\perp}\right)$, where V^{\perp} denotes the orthogonal complement of V.
(q) If the determinant of a 4×4 matrix A is 4 , then its rank must be 4 .
(r) The eigenvalues of any triangular matrix are its diagonal entries.
(s) If 1 is the only eigenvalue of an $n \times n$ matrix A, then A must be an I_{n}.
(t) If A is diagonalizable 4×4 matrix with $A^{4}=0$, then A must be a zero matrix.

1. $2 x+y-z=3$ The associated coefficient

$$
\begin{aligned}
& x+y+z=4 \quad \text { matrix } \\
& x+3 y+3 z=10 \quad A=\left[\begin{array}{ccc:c}
2 & 1 & -1 & 3 \\
1 & 1 & 1 & 4 \\
1 & 3 & 3 & 10
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \text { Therefore, } x=1, y=2 \text {, and } z=1
$$

2.

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
A
\end{array} \begin{array}{ccccc}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right] \operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & -4 \\
0 & 0 & 1 & -4 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$2 \vec{v}_{1}=\vec{v}_{2}, 3 \vec{v}_{1}-4 \vec{v}_{3}=\vec{v}_{4}$, and $-4 \vec{v}_{1}+5 \vec{v}_{3}=\overrightarrow{v_{5}}$
Thus, \vec{v}_{2}, \vec{v}_{4}, and \vec{v}_{5} are redundant.
A basis of imp $(A)=\left\{\left[\begin{array}{c}1 \\ -1 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5 \\ 1\end{array}\right]\right\}$
A basis of $\operatorname{ker}(A)=\left\{\left[\begin{array}{c}2 \\ -1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -4 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ 0 \\ 5 \\ 0 \\ -1\end{array}\right]\right\}$

$$
\begin{aligned}
& \operatorname{rref}(A)=\left[\begin{array}{ccc:c}
2 & 1 & -1 & 3 \\
1 & 1 & 1 & 4 \\
1 & 3 & 3 & 10
\end{array}\right]=\left[\begin{array}{ccc:c}
1 & 1 & 1 & 4 \\
2 & 1 & -1 & 3 \\
1 & 3 & 3 & 10
\end{array}\right]_{R_{3}-2 R_{1}}=\left[\begin{array}{ccc:c}
1 & 1 & 1 & 4 \\
0 & -1 & -3 & -5 \\
0 & 2 & 2 & 6
\end{array}\right](-1) R_{2} \\
& =\left[\begin{array}{lll:l}
1 & 1 & 1 & 4 \\
0 & 1 & 3 & 5 \\
0 & 2 & 2 & 16
\end{array}\right]_{R_{3}-2 R_{2}}^{R_{1}-R_{2}}=\left[\begin{array}{ccc:c}
1 & 0 & -2 & -1 \\
0 & 1 & 3 & 5 \\
0 & 0 & -4 & -4
\end{array}\right]_{\left(-\frac{1}{4}\right) R_{3}}=\left[\begin{array}{ccc:c}
1 & 0 & -2 & -1 \\
0 & 1 & 3 & 5 \\
0 & 0 & 1 & 1
\end{array}\right]_{R_{1}+2 R_{3}}^{R_{2}-3 R_{3}}
\end{aligned}
$$

3. Let P_{2} be the linear space of all polynomials of degree two or less.
Proof: We will show that the transformation

$$
T: P_{2} \rightarrow P_{2}, T(f(x))=f(x)-2 f^{\prime \prime}(x) \text { is linear }
$$

by showing it contans the zero clement, case (1), it is closed under scalar multiplication, case .(2). and it is closed under addition.
For case (1), let $f(x)=0$. Then,
$T(f(x))=0-2(0)=0 \cdot 0=0$. Thus, T contains the zero element.
For case (2), let $f(x) \in P_{2}$ and $g(x) \in P_{2}$. Then,

$$
\begin{aligned}
T(f+g) & =(f+g)-2(f+g)^{\prime \prime} \\
& =f+g-2 f^{\prime \prime}-2 g^{\prime \prime} \\
& =f-2 f^{\prime \prime}+g-2 g^{\prime \prime} \\
& =T(f)+T(g)
\end{aligned}
$$

Hence, T is closed under addition.
For case (3), let $f(x) \in P_{2}$ and $k \in \mathbb{R}$. Then,

$$
\begin{aligned}
T(k f) & =(k f)-2(k f)^{\prime \prime} \\
& =k f \cdot 2 k f^{\prime \prime} \\
& =k\left(f-2 f^{\prime \prime}\right) \\
& =k T(f)_{0}
\end{aligned}
$$

Hence, T is closed under scalar multiplication.
Therefore, T is linear. 11

$$
\begin{aligned}
& B:\left\{1, x, x^{2}\right\} \longrightarrow\left(a+b x+c x^{2}\right)-2\left(a+b x+c x^{2}\right)^{\prime \prime} \\
&=a+b x+c x^{2}-2(b+2 c x)^{\prime} \\
&=a+b x+c x^{2}-2(2 c) \\
&=(a-4 c)+b x+c x^{2} \\
& {[x] B=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \quad } \downarrow \\
& \\
& {\left[\begin{array}{lll}
1 & 0 & -4
\end{array}\right] B=\left[\begin{array}{l}
a-4 c \\
b \\
c
\end{array}\right] }
\end{aligned}
$$

$$
B=\left[\begin{array}{rrr}
1 & 0 & -4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since, \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are linearly independent,
$\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}$ the basis of $k e r(B)=\left\{\begin{array}{l}3 \\ 3\end{array}\right.$. This implies the basis of $\operatorname{kr}(T)=\{0\}$. Therefore, T is isomorphic.

$$
\begin{aligned}
& \text { 4. }\left[\begin{array}{ccc}
2 & -2 & 18 \\
2 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
2 & 1 & -2 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 12 \\
0 & 3 & -12 \\
0 & 0 & 6
\end{array}\right] \\
& \|\vec{v}\| \|=\sqrt{(2)^{2}+(2)^{2}+(1)^{2}} \\
& =\sqrt{4+4+1}=\sqrt{9} \\
& \overrightarrow{u_{1}}=\frac{1}{3}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \quad \overrightarrow{u_{2}}=\frac{1}{3}\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \overrightarrow{u_{3}}=\frac{1}{3}\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right] \\
& =3 \\
& \vec{v}_{2} \perp=\vec{v}_{2}-\left(\vec{u}_{1} \circ \vec{v}_{\theta}\right) \vec{u}_{1}=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{cc}
0_{r 12} & \left.\frac{1}{3}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right]
\end{array}\right. \\
& \left\|\overrightarrow{v_{2}}+\right\|=\sqrt{(-2)^{2}+(1)^{\frac{2}{+(2)^{2}}}} \\
& =\sqrt{4+1+4}=\sqrt{9} \\
& =\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]-0=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \\
& =3 r_{22} \\
& N_{3}^{\perp}=\overrightarrow{V_{3}}-\left[\left(\overrightarrow{u_{1}} \cdot \overrightarrow{v_{3}}\right) \overrightarrow{u_{1}}+\left(\overrightarrow{w_{2}} \cdot . \overrightarrow{\sqrt{3}}^{3}\right) \vec{u}_{2}\right] \\
& \left\|\vec{v}^{\perp}\right\|=\sqrt{(2)^{2}+(-4)^{2}+(4)^{2}} \\
& =\sqrt{4+16+16}=\sqrt{36} \\
& =6 r_{33}
\end{aligned}
$$

$$
=\left[\begin{array}{c}
18 \\
0 \\
0
\end{array}\right]-\left[\left[\begin{array}{l}
8 \\
8 \\
4
\end{array}\right]+\left[\begin{array}{c}
8 \\
-4 \\
-8
\end{array}\right]\right]=\left[\begin{array}{c}
18 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{c}
16 \\
4 \\
-4
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4 \\
74
\end{array}\right]
$$

5. $\overrightarrow{v_{1}}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]_{1} \overrightarrow{v_{2}}=\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right] \quad V$ a plane in $\mathbb{R}^{3} \quad \mid V=\operatorname{span}\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$.
\vec{v} and $\vec{v} 2$ are almady perpendicular because
$\vec{V}_{1}: \vec{V}_{z}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]=0$. Thus,

$$
\begin{aligned}
& \vec{v}_{1} v_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
\vec{u}_{1}
\end{array}=\frac{1}{3}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \text { and } \vec{u}_{2}=\frac{\vec{v}_{2}}{\|\sqrt{2}\|}=\frac{1}{3}\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] .\right.
\end{aligned}
$$

Thus, M, the matrix of projection of V is

$$
M=Q Q^{\top} \text { where } Q=\left[\begin{array}{ll}
\overrightarrow{u_{1}} & \overrightarrow{u_{j}}
\end{array}\right] \text {, so }
$$

$$
M=\frac{1}{3} \cdot \frac{1}{3}\left[\begin{array}{cc}
2 & -2 \\
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 & 1 \\
-2 & 1 & 2
\end{array}\right]=\frac{1}{9}\left[\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right] \text {. If } \vec{x}=\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]_{1} \text { then }
$$

$$
\begin{aligned}
& \operatorname{Proj} v(\vec{x})=M \vec{x}= \frac{1}{9}\left[\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& 1\left[\begin{array}{l}
8
\end{array}\right]
\end{aligned}
$$

$$
=\frac{1}{9}\left[\begin{array}{c}
8 \\
11 \\
7
\end{array}\right]
$$

6. $\left|\begin{array}{lll}1 & 1 & 2\end{array}\right|$ Laplace in I
7.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 0 & 2 \\
0 & 0 & 1
\end{array}\right] \\
& \operatorname{det}(A \cdot \lambda I 3)=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-5 & -\lambda & 2 \\
0 & 0 & 1-\lambda
\end{array}\right| \begin{array}{|c|c}
\text { Laplace rI I } \\
\text { Lacer CI I }
\end{array}=(-\lambda)\left|\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =(-\lambda)(1-\lambda)(1-\lambda)=0 \\
& \quad \lambda=0, \lambda=1
\end{aligned}
$$

algmult alg must of 1

$$
E_{0}=\operatorname{ker}\left(A-0 I_{3}\right)=\operatorname{ker}\left(\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]} \\
\overrightarrow{V_{1}} \overrightarrow{V_{2}} \overrightarrow{V_{3}} \\
\overrightarrow{V_{2}}=0
\end{array}\right)=\operatorname{span}\left(\begin{array}{l}
{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
\text { CA basis of } \\
E_{0}
\end{array}\right.
$$

$\lambda=0$ has geo mut of 1

$$
\begin{array}{r}
\left.E_{1}=\operatorname{kar}\left(A-1 I_{3}\right)=\operatorname{ker}\left(\begin{array}{ccc}
0 & 0 & 0 \\
-5 & -1 & 2 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-5 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]\right\} \\
\overrightarrow{v_{1}} \vec{v}_{2} \vec{v}_{3}=-\vec{v}_{2} \\
\overrightarrow{\vec{v}_{1}}=5 \vec{v}_{2}, \vec{V}_{3}=-\vec{v}_{2}=0 \\
\vec{v}_{1}-5 \vec{v}_{2}=0, \vec{v}_{2}+\overrightarrow{v_{3}}=0
\end{array}
$$

$\lambda=1$ has geo molt of 2
Since, alg multiplicity = geo multiplicity for all λ, an eigenbasis of A is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -5 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$.

$$
S=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -5 & 2 \\
0 & 0 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

$$
\lambda=1, \lambda=2, \lambda=4
$$

$$
\left.\begin{array}{rl}
\lambda & =1, \lambda=2, \lambda=4 \\
E_{1} & =\operatorname{ker}(A-153)=\operatorname{kr}\left(\left[\begin{array}{ccc}
0 & -3 & 9 \\
0 & 1 & -12 \\
0 & 0 & 3
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \rightarrow \text { eigenfunction: } 1 \\
\sqrt{1} & \sqrt{3} \\
\sqrt{3}
\end{array}\right]
$$

$$
\lambda=1 \text { has geo must } \vec{v}_{\hat{v}}=0
$$

$\left.E_{2}=\operatorname{kr}(A-2 I 3)=\operatorname{ker}\left(\begin{array}{ccc}-1 & -3 & 9 \\ 0 & 0 & -12 \\ 0 & 0 & 2\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}3 \\ -1 \\ 0\end{array}\right]\right) \rightarrow \underset{(3-x)}{\text { eigenfunction }}$

$$
\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}
$$

$\lambda=4$ has geo mut \downarrow of 1

$$
\begin{aligned}
& \lambda=2 \text { has geomult }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } B:\left\{1, x: x^{2}\right\} \xrightarrow{T} a+b(2 x-3)+c(2 x-3)^{2} \\
& =a+2 b x-3 b+c\left(4 x^{2}-12 x+9\right) \\
& =a+2 b x-3 b+4 c x^{2}-12 c x+9 c \\
& =(a-3 b+9 c)+(2 b-12 c) x+4 c x^{2} \\
& {[x] B=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]} \\
& B=\left[\begin{array}{ccc}
1 & -3 & 9 \\
0 & 2 & -12 \\
0 & 0 & 4
\end{array}\right] \\
& {[T] B=\left[\begin{array}{c}
a-3 b+9 c \\
2 b-12 c \\
4 c
\end{array}\right]}
\end{aligned}
$$

Tis diagonalizable because alg mult $=$ geo mult for a λ, and

$$
\begin{aligned}
& \text { for a } \\
& O=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right] \text {. Eigenbasis of } T \text { is }\left\{1,(3-x),(3-x)^{2}\right\}
\end{aligned}
$$

9.

$$
A=\left[\begin{array}{ccc}
0 & 2 & 2 \\
2 & 1 & 0 \\
2 & 0 & -1
\end{array}\right]
$$

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 0 & -1
\end{array}\right] \\
\operatorname{det}(A-\lambda I 3)=\left|\begin{array}{ccc}
-\lambda & 2 & 2 \\
2 & 1-\lambda & 0 \\
2 & 0 & -1-\lambda
\end{array}\right|-\text { Loplacer rI }=(-2)\left|\begin{array}{cc}
2 & 0 \\
2 & -1-\lambda
\end{array}\right|+(1-\lambda)\left|\begin{array}{cc}
-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right|
\end{gathered}
$$

Lopber CII

$$
\begin{gathered}
\text { Lopper cII } \\
=(-2)(-2-2 \lambda)+(1-\lambda)\left(+\lambda+\lambda^{2}-4\right)=\not x+4 \lambda+\lambda+\lambda^{2},\left\langle-\lambda^{2}-\lambda^{3}+4 \lambda\right. \\
=-\lambda^{3}+9 \lambda=-\lambda\left(\lambda^{2}-9\right)=-\lambda(\lambda+3)(\lambda-3)=0 \\
\lambda=0, \lambda=3, \lambda=-3
\end{gathered}
$$

$$
\begin{aligned}
& \text { all with alg mult } 1 \\
& E_{0}=\operatorname{kur}(A)=\operatorname{kur}\left(\left[\begin{array}{ccc}
0 & 2 & 2 \\
2 & 1 & 0 \\
2 & 0 & -1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
12 \\
2
\end{array}\right]\right) \\
& \begin{array}{r}
\lambda=0 \text { has geo } \quad b \\
\text { mult } 1 \quad \operatorname{ker}\left(\left[\begin{array}{ccc}
1 & 0 & -1 / 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\right) \\
2 \overrightarrow{v_{3}}=-\overrightarrow{V_{1}}+2 \overrightarrow{v_{2}}
\end{array} \\
& E_{3}=\operatorname{kur}(A-3 I 3)=\operatorname{kar}\left(\left[\begin{array}{ccc}
-3 & 2 & 2 \\
2 & -2 & 0 \\
2 & 0 & -4
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right)
\end{aligned}
$$

$\lambda=3$ has geomults $\operatorname{lur}^{(}\left(\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]\right)$

$$
\begin{gathered}
E_{-3}=\operatorname{kr}(A+3 I 3)=\operatorname{kar}\left(\left[\begin{array}{lll}
3 & 2 & 2 \\
2 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right]\right) \\
\begin{array}{c}
\lambda=-3 \text { has geo mut } \\
1
\end{array} \begin{array}{c}
\operatorname{kr}\left(\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]\right) \\
\\
2 \vec{v}_{3}=2 \vec{v}_{1}-\sqrt[\rightharpoonup]{2}
\end{array}
\end{gathered}
$$

Since, alg mut $=$ geomut for all λ, A has an eigenbasis and since the vectors that span it are perpendicular.
an orthonormal eigenbasis of $A:\left\{\frac{1}{3}\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right], \frac{1}{3}\left[\begin{array}{c}2 \\ 2 \\ 1\end{array}\right], \frac{1}{3}\left[\begin{array}{c}2 \\ -1 \\ -2\end{array}\right]\right\}$.
10. a) True, if any are LD this could occur

$$
\left[\begin{array}{llll:l}
1 & 0 & 0 & 0 & a \\
0 & 1 & 0 & 0 & b \\
0 & 0 & 1 & 0 & c \\
0 & 0 & 0 & 0 & d
\end{array}\right] \begin{aligned}
& \text { where } \\
& \text { and } \\
& \text { and }
\end{aligned} \quad d \neq 0
$$

b) True $\left[\begin{array}{lll}1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0\end{array}\right]$ and any $\in \mathbb{R}$
c) True, contains O element and closed, only more restricted
d) False, only if $B=A^{-1}$ and $A=B^{-1}$
e) True, contains Ofunction, + closed under linear combination
f) True, $\mathcal{B}=\left\{1, x, x^{2}\right\}$ dim $=3$
g) True, lar (T-1) should be empty and imf (T^{-1}) should ks full if inurtible
h) False, cannot know without checking
i) True, holds for all matrices, full stop
j), Idon't believe distributive property is ever defined for matrix multiplication
True \rightarrow if the product make sense
k) False, converse is true

1) True, definition of diagonalizables
m) False, $\quad\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ or $\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 5\end{array}\right]$
$d e 0 \quad d i t=0$
but diagonal
s) False, eg. $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
n) False
t) True
2) True,
p) False, $\operatorname{dim}(v)+\operatorname{dim}\left(V^{\lrcorner}\right)=7$
a) True, if $\operatorname{det}(A) \neq 0$ then LI and invertible, so

$$
\operatorname{rref}\left[(A)=\left[\begin{array}{l}
1000 \\
0100 \\
8010 \\
000
\end{array}\right] \text { so } \operatorname{rank}(A)=4\right.
$$

r) True

$$
\begin{gathered}
1\left|\begin{array}{cc}
a-\lambda l & c \\
0 & d \lambda e \\
0 & 0
\end{array}\right|=(a-\lambda
\end{gathered}\left|=\begin{array}{cc}
d-\lambda & e \\
0 & f-\lambda
\end{array}\right|=(a-\lambda)(d-\lambda)(f-\lambda)=0
$$

