The scorpions (Arachnida: Scorpionidae) of the Aegean area: current problems in taxonomy and biogeography

Victor Fet¹ and Matt E. Braunwalder²

¹Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA
²ARACHNODATA, Frauentalweg 97, CH-8045 Zurich, Switzerland

ABSTRACT. The fauna and zoogeography of the scorpions in the Aegean area are not well researched and based upon specimens randomly collected and described by various authors in the past 150 years. A first revision of the scorpions in this region was provided by Kinzelbach in 1975 (completed with maps in 1985). However, the taxonomical validity of some species and most of the subspecies, first of all those in the genus Euscorpius (Euscorpiidae) is still unclear and their geographic ranges remain rather uncertain. Current comparative studies on mitochondrial DNA and nuclear gene (allozymes) variation (Gantenbein et al., 1999a, b) of these scorpions, revealed such promising first results that, as a consequence, a longer-termed research project is now introduced to analyze the scorpion fauna of the Aegean area on a larger scale and with requested close collaboration of zoologists from universities in Greece, Turkey and Cyprus.

INTRODUCTION

The first revision of the scorpion fauna of the circum-Aegean area in Europe and the adjacent parts of Asian Turkey was published by Kinzelbach (1975). It was not only a compilation of most noteworthy data that had been published by previous authors, but also the introduction of a new theory of the phylogeny of the subfamilies Euscorpiinae (now family Euscorpiidae) and Calchini (now Iurinae, family Iuridae) included by Kinzelbach in the family Chactidae. This theory was based upon alleged mechanisms of hybridization, and the coincidence of distributional patterns of morphological characteristics with the results of the reconstruction of distribution during the Tertiary period. Earlier contributions and often contradictory data relevant to this subject have been published by Birula (1917), Hadzı (1931), Vachon (1947a, 1947b, 1951, 1953) and Caporiacco (1950). Kinzelbach’s phylogenetic and zoogeographical theories have since not been discussed or confirmed except by himself (Kinzelbach, 1982, 1985; Vachon & Kinzelbach, 1987), although a few more recent papers deal with the taxonomy and zoogeography of the scorpions in general or particular species in this area (Voulalas & Michalis, 1977; Bonacina, 1980, 1982; Francke, 1981; Michalis & Kattoulas, 1981; Sissom, 1987; Michalis & Dolkeras, 1989; Kritsch, 1993; Crucitti, 1993, 1995a, b; Lacroix, 1995; Gantenbein et al., 1999b).

PROBLEMS IN THE TAXONOMY AND BIOGEOGRAPHY OF SCORPION TAXA IN GREECE, TURKEY AND CYPRUS

Below, we describe the current problems in taxonomy and biogeography for all scorpion taxa occurring in Greece, Turkey and Cyprus.

Family BUTHIDAE C. L. Koch, 1837

Genus Mesobuthus Vachon, 1950

Mesobuthus gibbosus (Brullé, 1832)

This common species is recorded from Albania, Yugoslavia (Montenegro), Greece, Cyprus, Turkey (except north), Syria, and Lebanon. Recent studies of distribution and ecology in Greece include Crucitti & Marini (1987), Crucitti (1993), and Crucitti et al. (1998). The species is well-defined and separated from other species of Mesobuthus which inhabit exclusively Asia (from eastern Turkey to China). Some variation
exists across the range but its extent is poorly studied. A subspecies \textit{M. g. anatolicus} Schenkel, 1947 was described from Kayseri, Anatolia (types in Basel Museum) and later confirmed by KINZELBACH (1975). However, KRITSCHER (1993) doubted the existence of a clear separation between the European and Asian populations of \textit{M. gibbosus}. Further, detailed investigation combined with genetic methods is necessary; and first genetic data on this species are being currently obtained (B. Gantenbein et al., pers. comm). The type locality of \textit{M. gibbosus} is unclear and was referred only to “Morea” (=Peloponnesos). Type(s?) probably are lost. Designation of the neotype is planned from Greece. In addition, the status of Eastern Mediterranean populations (east Turkey, Syria, Lebanon) is unclear. If confirmed as a separate taxon, there is an available name for these populations since EHRENBERG in 1828 described his “\textit{Androctonus} nigrocinctus” from the mountains near Beirut (juvenile type in Berlin Museum). This name was for a long time considered a synonym of \textit{M. gibbosus} (in fact being a senior synonym) (BRAUNWALDER & BET, 1998).

No other buthids are known from Greece and the Balkans. The record of \textit{Androctonus bicolor} (Ehrenberg, 1828) from Thessaly in Greece (MICHALIS & DOLKERS, 1989) is erroneous and is based on \textit{Mesobuthus gibbosus} (V. F., observations of the original material in the Zool. Museum Hamburg). From eastern Anatolia, there are confirmed records of some characteristically Asian species of buthids: \textit{Mesobuthus eupeus} (C.L.Koch, 1838), \textit{M. caucasicus} (Nordmann, 1840), \textit{Androctonus crassicauda} (Olivier, 1807), \textit{Leiurus quinquestriatus} (Ehrenberg, 1828), and \textit{Compsobuthus matthiesseni} (Birula, 1905) (KINZELBACH, 1985; KOVÁRIK, 1996). Their study could be beneficial for further understanding of the taxonomy and zoogeography of Asian buthid genera. Any records of other species of Buthidae from Turkey should be confirmed. The occurrence of \textit{B. occitanus} on Cyprus also requires verification.

The only species currently recognized is \textit{Iurus dufoureius} (Brullé, 1832), common in the southern Greece, the Aegean islands and southern Turkey. Its ecol-ogy in Peloponnesos was recently studied by CRUCITTI (1995a, b). The type locality is unclear and was referred only to “Morea”. Type(s?) probably is lost. Designation of the neotype is planned from Greece. The status of sub-species \textit{I. d. asiaticus} Birula, 1903 (type in St. Petersburg) from Anatolia is problematic. Francke (1981) considered it a separate species. KRITSCHER (1993) analyzed a larger series of specimens and concluded that this form has only the status of a subspecies. Variation of this species from
Greece, Turkey and the island populations should be studied in detail using genetic techniques, thus adding new data for the study of its origin and distribution initiated by Vachon (1947a, b; 1953).

Family SCORPIONIDAE Latreille, 1802

Genus Scorpio Linnaeus, 1758

Scorpio maurus Linnaeus, 1758. This is an extremely polymorphic, arid Asian-African species (or possibly a species complex) (Birula, 1910; Levy & Amitai, 1980). In the southeastern Anatolia, the endemic Middle Eastern subspecies (or maybe a species) *S. m. fuscus* (Ehrenberg, 1828) is found. This population represents the northernmost extreme of its range and should be important for a comparative study with populations from Syria, Iraq, Lebanon, Jordan and Israel in morphological, genetic and ecological aspects. The neotype specimen of *S. m. fuscus* should be designated from Lebanon.

Family EUSCORPIIDAE Laury, 1896

Genus Euscorpius Thorell, 1876

This is the most widespread genus of scorpions in the discussed region, where it includes at least three, and possibly five or more, species. Multiple subspecific forms are described, but their validity is not clear. A wealth of information is scattered in the literature (published in Italian, German, French, Serbo-Croatian, Russian etc.) but a comprehensive modern revision of the entire genus has never been done and is long overdue.

Euscorpius carpathicus (Linnaeus, 1758)

Species complex [including “E. mesotrichus Hadži 1929”= *E. tergestinus* (C.L. Koch, 1837)].

Traditionally treated as one species (di Caporiacco, 1950; Vachon, 1981; Fet, 1986, 1989, 1997a), *E. carpathicus* is the most widespread scorpion species in Europe (from Balearic to Crimea; see Fet, 1997a), with a large number of valid subspecies (over 20!). A number of those forms is described from Greece (including the islands of the Ionian and Aegean Seas), but their validity is unclear. Kinzelbach (1975) divided *E. carpathicus* into two species, designating the second one as “*E. mesotrichus* Hadži, 1929”. This name, however, is not available since it is a junior homonym of *E. italicus mesotrichus* Hadži, 1929 (Fet, 1997b). According to the International Code of Zoological Nomenclature, the correct name for such species should be *E. tergestinus* (C.L. Koch, 1837) (which was listed by Kinzelbach (1975) as a synonym). Kinzelbach (1975) classified all variation of the described subspecific forms of *E. carpathicus* into two species, without providing sufficient justification. His observation of sympathy for *E. carpathicus* and “*E. mesotrichus*” in Greece (Ossa, Pindos, Pilion, and Olympus) led to the conclusion of their sympathy over a wide area of the Mediterranean, and to restriction of the range of true *E. carpathicus* to the Eastern Mediterranean and Southeast Europe. The name “*E. mesotrichus* Hadži 1929” was used afterwards by some authors (Vachon & Kinzelbach, 1987, Michalis & Dolkeras, 1989; Krutsch, 1993), while others (Boncina, 1983; Fet, 1986, 1989, 1997a) did not accept Kinzelbach’s division, but no detailed, critical analysis has yet been published. The type locality for *E. carpathicus* is Romania (type in the Linnean Society, London), and that for *E. tergestinus* is Trieste, Italy (type lost; neotype designation is planned). Di Caporiacco (1950) indicate that Koch’s form inhabits also part of Italy, the Dalmatian coast of ex-Yugoslavia (now Croatia) and possibly goes as far eastward as Taigetos in Greece. No study has been done (but is much needed) of all these forms all over their range; the first results of genetic analysis (Gantenbein, Fet et al., in progress) reveal high variation and the possible existence of more than two species in this complex.

Kinzelbach (1975) also promoted a species origin theory, which, in fact, advocated a purely hybridogenic origin for all *Euscorpius* species. The only substantiation for this theory was an ordered characterization of meristic morphological characters (number of trichobothria on pedipalp). In particular, Kinzelbach (1975) maintained that all forms of the *E. carpathicus* complex that had an intermediate number of trichobothria are in fact hybrids between *E. carpathicus* and “*E. mesotrichus*”; one of the conclusions in this theory was that the entire Crete population, described by Birula (1903) as *E. candiota* (synotypes in St. Petersburg), is in fact a hybrid. Further analysis is warranted, including detailed genetic comparisons (allozyme and DNA techniques) of this crucial Crete population with other “intermediate” morphological forms from the Balkans as well as with two alleged ancestral species.

An additional problem in *E. carpathicus* complex concerns some localized, probably disjunct mountain populations in the Balkans, first of all “*E. germanus croaticus*” Caporiacco, 1950 (Croatia, Bosnia-Herzegovina; type

Fig. 3. – Distribution of *E. carpathicus* (L.) \(\text{and } E. c. \text{candiota} \text{(Birula) / / / (and black dots) according to Kinzelbach (1985).} \text{+ + + distribution range of *E. carpathicus* (Fet & Braunwalder, present study).} \)
from Velebit Mts in Zoological Museum, Florence, seen) and a similar (if not identical) form from the Western Rhodopi Mts in Bulgaria (Smolyan District, our data, unpublished); the latter form most likely will be found within the territory of Greece. These forms have morphological characters indicating their affinity to *E. carpathicus* rather than to *E. germanus*, although its reduced trichobothrial formulae match those of *E. germanus*. Further studies should clarify the status of these populations, which could constitute glacial relicts of *E. carpathicus* complex.

Euscorpius italicus (Herbst, 1800)

![Image](44x447 to 261x567)

This species is found from France to the Caucasus (Caporiacco, 1950; Kinzelbach, 1975). No subspecies are currently recognized (Vachon, 1981; Bonacina, 1982). Caporiacco (1950) and Vachon (1981) characterized an unusual “oligotrichous” form from Taigetos, Greece. Crucitti (1995a) observed ecology, probably of the same form as “*Euscorpius cf. italicus*”. From new DNA-based information available (analysis of the 16S rRNA mitochondrial DNA gene sequences by Gantenbein et al., 1999b) it appears that *E. italicus* holds a derived place in the phylogenetic tree of the genus *Euscorpius* and is very closely related to *E. carpathicus* complex (or maybe even to a certain part of it). Since the major diagnostic character set in *E. italicus* appears to be a dramatic increase in trichobothrial numbers (Vachon, 1975, 1981), it is very important that information available (analysis of the 16S rRNA mitochondrial DNA gene sequences by Gantenbein et al., 1999b) opens unprecedented opportunities for the study and interpretation of ancient and diverse scorpion fauna of one of the most complicated biogeographic regions of the world, the Eastern Mediterranean (Oosterbroek & Arntzen, 1992). The molecular data analysis should be demonstrated that this species is separate, and that in fact the major part of the range formerly recognized for *E. germanus*, belongs to *E. mingrelicus*. *E. germanus* (C.L. Koch, 1837) was described from the historical Tyrol (now Trentino-Alto Adige in northeast Italy) (type lost; neotype designation is planned) (Fet & Braunwalder, 1997). Since Bonacina (1980) separated *E. mingrelicus*, this species appears to be the most geographically restricted of all *Euscorpius*, occupying the southern part of the Alpine belt in Italy, Switzerland, Austria, and Slovenia; there is no evidence that true *E. germanus* is found in Greece.

E. mingrelicus was originally described from Georgia (Caucasus) (type lost; neotype designation is in press). However, it is recorded from northeast Italy to Russia; its presence in Greece requires confirmation, and its distribution in the Balkans and Turkey is poorly documented.

An additional species, *E. gamma* Caporiacco, 1950, has been now separated from this complex (Scherabon et al., in press). Subspecific structure requires revision; recently, Lacroix (1995) described three new subspecies from Anatolia in addition to three already existing (*E. m. mingrelicus*, *E. m. phrygius* and *E. m. ciliciensis*; see Birula, 1898; Bonacina, 1980; Fet, 1986, 1993). It appears that the species is found over the entire Anatolian Peninsula, including high mountain ranges (Bulghar Dagh, Taurus Mts). It is not clear which form is found on the Aegean islands (Tinos and Ikaria; Kinzelbach 1975); we suggest that these records might refer to *E. carpathicus*. Designation of the neotype for *E. mingrelicus* is planned from Georgia.

CONCLUSIONS

Application of modern molecular phylogenetic techniques, especially DNA-based (Gantenbein et al., 1999a, 1999b) opens unprecedented opportunities for the study and interpretation of ancient and diverse scorpion fauna of one of the most complicated biogeographic regions of the world, the Eastern Mediterranean (Oosterbroek & Arntzen, 1992). The molecular data analysis should be...
combined with detailed morphological investigation and exhaustive geographic sampling to re-analyse and reveal the importance of diagnostic characters in order to understand real taxonomic relationships and reconstruct the history of taxa. It is thus our goal to reanalyze extensive collections accumulated in all major European museums and to establish international cooperation, which is necessary to further facilitate and support these studies with new material and ecological data. For this purpose, we are initiating a long-term comprehensive project for which we invite regional zoologists, university professors and students, and amateurs to actively participate. This project will be coordinated by the non-profit Swiss agency ARACHNODATA, which currently runs a number of international cooperative projects (Switzerland, USA, Middle East) on the taxonomy, biology, ecology and zoogeography of scorpions.

ACKNOWLEDGMENTS

We are grateful to Benjamin Gantenbein, Carlo Largiadér, Adolph Scholl and Mark Barker for their enthusiastic cooperation in the initiation and promotion of the genetic characterization of the European and Aegean scorpion fauna. We thank W. David Sissom, Michael Soleglad and Graeme Lowe for their constant help in discussion of scorpion taxonomy. This communication was in part supported by a NASA Research Initiation Grant to the senior author.

REFERENCES

